Parallel Programming with MPI

Lars Koesterke
04/01/2014: HPC Workshop at ASU

04/04/2014: HPC Workshop at CSU

TAGCG TEXAS ADVANCED COMPUTING CENTER

Outline

* Message Passing Overview

* Compiling and running MPI programs

e Point-to-Point Communication

e Collective Communication

TAGCC TEXAS ADVANCED COMPUTING CENTER

OVERVIEW

TAGCC TEXAS ADVANCED COMPUTING CENTER

Message Passing Overview

 What is message passing?

Simple Answer: The sending and receiving of messages
between diverse computational resources.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Message Passing Overview

 Messages may be used for
— sending data
— performing operations on data
— synchronization between tasks

 Why do we need to send/receive messages?

— On clusters, each node has its own address space, and no way to
get at another’s, except over the network

TAGCC TEXAS ADVANCED COMPUTING CENTER

Message Passing Model

* Tasks send and receive messages to
exchange data.

7’

» Data transfer requires a cooperative
operation to be performed by each
process.

MEMORY

data
(original)

MEMORY

(copy)

* The programmer is responsible for
determining all parallelism.

_— O E—— E—

—
_— . .

S e e e e o

* Message Passing Interface (MPI) was
first released in 1994. (MPI-2 in 1996.) '

e MPIlis the de facto standard for
message passing. message

http://www-unix.mcs.anl.gov/mpi/

TAGCC TEXAS ADVANCED COMPUTING CENTER

What is MPI?

* MPIlis
— An acronym for Message Passing Interface
— A standard Application Programming Interface (API)

* MPI s not
— A language
— An implementation
— Specific to a particular machine

TAGCC TEXAS ADVANCED COMPUTING CENTER

MPI| Fundamentals

* Subsets of functionality
— basic (about 6 functions)
— intermediate
— advanced (up to 125 functions)

* One goal of MPl is to provide access to advanced parallel hardware
for application scientists (not just programmers and computer
scientists)

 Many high-level application libraries are based on MPI
— PETSc
— SAMRAI
— Cactus
— FFTW
— PLAPACK

TAGCC TEXAS ADVANCED COMPUTING CENTER

Why learn MPI?

* MPIis astandard
— Public domain version easy to install

— Vendor-optimized version available on most communication
hardware

 MPI applications are portable.

* MPI is expressive: MPI can be used for many different
models of computation, therefore can be used with many
different applications.

* MPIlis a good way to learn the theory of parallel
computing.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Compiling MPI Programs

e Building simple MPI programs, using MPICH
% mpicc -o first first.c
% mpif90 -o firstf firstf.f (also mpif77)

 These are simply shell script wrappers for system
compilers.

 Some MPI specific compiler options
— -mpilog :Generate log files of MPI calls
— -mpitrace :Trace execution of MPI calls

TAGCC TEXAS ADVANCED COMPUTING CENTER

Compiling MPI Programs

 The names of the mpiXXX compiler scripts are not
specified by the MPI standard.

 Examples:
— IBM: mpcc_r,mpxlf_r
— Kraken (A Cray system in the Teragrid): cc, and ftn

TAGCC TEXAS ADVANCED COMPUTING CENTER

Running MPI Programs

* Torun asimple MPI program using MPICH
% mpirun -np 2 <progname>

 Some MPI specific running options
- -t : shows the commands that mpirun would execute
— -help :shows all options formpirun

* The name “mpirun” is not part of the standard, other names
include

— IBM SP: poe
— Lonestar/Stampede: ibrun
— Mpich2: mpiexec

TAGCC TEXAS ADVANCED COMPUTING CENTER

MPI BASICS

TACG TEXAS ADVANCED COMPUTING CENTER

Outline

e Basic MPI code structure

* Point-to-point communication

 Collective communication

TAGCC TEXAS ADVANCED COMPUTING CENTER

MPI Initialization & Termination

* All processes must initialize and finalize MPI (each is a collective call).

= MPI Init . starts up the MPI runtime environment
= MPI _Finalize : shutsdown the MPI runtime environment

 Mustinclude header files — provides basic MPI definitions and types.

= Header File

Fortran 77 Fortran 90 C/C++

include ‘mpif.h’ use mpi #include “mpi.h”

®* Format of MPI calls

Fortran 77/90 binding C/C++ binding

CALL MPI_XYYY(parameters.., ierr) ierr = MPI_Xyyy(parameters...)

TACG TEXAS ADVANCED COMPUTING CENTER

Communicators

* MPluses MPI_Comm objects to define subsets of processors which may
communicate with one another.

 Most MPI routines require you to specify a communicator as an argument.

* Default communicator: MPI_COMM_WORLD —a predefined communicator
that includes all of your processes.

* |In MPI terminology, a processor’s “Rank” is:
— A unique ID within a communicator
— Assigned by the system when the communicator is created
— Part of a contiguous integer range which begins at zero
— The way one specificies the source and destination of messages

TAGCC TEXAS ADVANCED COMPUTING CENTER

Communicators

« Two common functions for interacting with an MPI__Comm object
are:

« MPI_Comm_size(MPI_Comm _World, int *np)
— Gets the number of processesin a run, NP

« MPI_Comm_rank(MPI_Comm World, int *rank)

— Gets the rank of the current process

— returns a value between 0 and NP-1 inclusive

* Both are typically called just after MPI_Init.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Sample MPI code (C)

#include <mpi.h>
[other includes]

int main(int argc, char **argv){
int ierr, np, rank;
[other declarations]

ierr = MPI Init(&argc, &argv);
ierr = MPI_Comm_size (MPI_COMM_WORLD, &np);
ierr =

MPI _Comm_rank(MPI_COMM_WORLD, &rank);
[actual work goes here]

MPI_Finalize();

TAGCC TEXAS ADVANCED COMPUTING CENTER

Sample MPI code (C++)

#include <mpi.h>
[other includes]
int main(int argc, char **argv){
int np, rank;
[other declarations]

MPI::Init(argc, argv);
np = MPI::COMM_WORLD.Get_size();
rank= MPI::COMM_WORLD.Get rank();

[actual work goes here]

MPI::Finalize();

TAGCC TEXAS ADVANCED COMPUTING CENTER

Sample MPI code (F90)

program samplempi
use mpi
[other includes]

integer :: ierr, np, rank
[other declarations]

call mpi_init(ierr)
call mpi_comm_size(MPI_COMM _WORLD, np, ierr)
call mpi_comm_rank(MPI_COMM _WORLD, rank, ierr)

[actual work goes here]

call mpi_finalize(ierr)
end program

TAGCC TEXAS ADVANCED COMPUTING CENTER

MPI| Execution

Every process gets a copy of the executable:
Single Program, Multiple Data (SPMD).

* They all start executing it.

* Each looks at its own rank to determine which part of the
problem to work on.

* Each process works completely independently of the
other processes, except when communicating.

TAGCC TEXAS ADVANCED COMPUTING CENTER

POINT-TO-POINT
COMMUNICATION

TAGCC TEXAS ADVANCED COMPUTING CENTER

Point-to-Point Communication

* Sending data from one point (process/task) to another point
* One task sends while another receives

(process/task)
task O task 1
| data__
Send

network

TAGCC TEXAS ADVANCED COMPUTING CENTER

P2P Communication: Send

MPI_Send(void *buf,
int count,
MPI Datatype datatype,
int dest,
int tag,
MPI_Comm comm) ;

Argument Description

buf initial address of send/receive buffer

count number of items to send

datatype MPI data type of items to send/receive

dest MPI rank or task receiving the data

tag message ID

comm MPI communicator where the exchange occurs

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

P2P Communication: Recelve

MPI_Recv(void *buf,
int count,
MPI Datatype datatype,
int source,
int tag,
MPI_Comm comm,
MPI Status *status)

Argument Description

buf initial address of send/receive buffer

count number of items to send

datatype MPI data type of items to send/receive

source MPI rank of task sending the data

tag message ID

comm MPI communicator where the exchange occurs
status returns information on the message received

TACG TEXAS ADVANCED COMPUTING CENTER

Summary: MPl_Send & MPI_Recv

MPI_Send(buf, count, datatype, dest, tag, comm);

MPI_ Recv(buf, count, datatype, source, tag, comm, status);

* Inthe status object, the system can return details about the message
received. Can pass default MPI_STATUS IGNORE object instead.

* These calls are “blocking”

* This means that program flow does not return to the calling function until
the send/recv pair is completed.

* Canlead to a condition known as “deadlock” in case a Send is not paired
with a matching Receive.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

MPI_SendRecv

MPI SendRecv(/*send arguments*/
sendbuf, sendcount, sendtype,
dest, sendtag,
/*receive arguments*/
recvbuf, recvcount, recvtype, source,
recvtag, comm, status);

* Union of MPI_Send and MPI_Recv commands
* Executes a blocking send & receive operation

* Send and Receive stages use the same communicator, but have
distinct tags

* Useful for communications patterns where each node both sends and
receives messages (two-way communication)

TAGCC TEXAS ADVANCED COMPUTING CENTER

A quick overview of MPI's send modes

MPI has a number of different "send modes." These represent different choices of buffering
(where is the data kept until it is received) and synchronization (when does a send complete). In
the following, | use "send buffer" for the user-provided buffer to send.

MPI_Send: will not return until you can use the send buffer. It may or may not block (it is
allowed to buffer, either on the sender or receiver side, or to wait for the matching receive).

MPI_Bsend: May buffer; returns immediately and you can use the send buffer. A late add-on
to the MPI specification. Should be used only when absolutely necessary.

MPI_Ssend: will not return until matching receive posted

MPI_Rsend: May be used ONLY if matching receive already posted. User responsible for
writing a correct program.

MPI _Isend: Nonblocking send. But not necessarily asynchronous. You can NOT reuse the
send buffer until either a successful, wait/test or you KNOW that the message has been
received (see MPI_Request_free). Note also that while the I refers to immediate, there is no
performance requirement on MPI_Isend. An immediate send must return to the user
without requiring a matching receive at the destination. An implementation is free to send
the data to the destination before returning, as long as the send call does not block waiting
for a matching receive. Different strategies of when to send the data offer different
performance advantages and disadvantages that will depend on the application.

And then there is: MPI lbsend, MPI| Issend, and MPI Irsend

TAGCC TEXAS ADVANCED COMPUTING CENTER

A quick overview of MPI's send modes

Recommendations

* The best performance is likely if you can write your program so that you could use just
MPI_Ssend; in that case, an MPIl implementation can completely avoid buffering data. Use
MPI_Send instead; this allows the MPI implementation the maximum flexibility in choosing
how to deliver your data. (Unfortunately, one vendor has chosen to have MPI_Send
emphasize buffering over performance; on that system, MPIl_Ssend may perform better.) If
nonblocking routines are necessary, then try to use MPI_Isend or MPI_Irecv. Use MPI_Bsend
only when it is too inconvienent to use MPI_Isend. The remaining routines, MPI_Rsend,

MPI_Issend, etc., are rarely used but may be of value in writing system-dependent message-
passing code entirely within MPI.

from: http://www.mcs.anl.gov/research/projects/mpi/sendmode.html

TAGCC TEXAS ADVANCED COMPUTING CENTER

Synchronous Communication

request to send
>

ready to receive
source [0] <€

destination [1]

message

>

* Process 0 waits until process 1 is ready

* Handshaking occurs between send & receive tasks to confirm a safe send.

* Blocking send/receive

* Thisisrarely the case in real world.

* Need to be able to deal with storing data when multiple tasks are out of sync.

e MPI_Ssend & MPI_Srecv

TAGCC TEXAS ADVANCED COMPUTING CENTER

Buffered Communication

system buffer

- O O O O . . .y

- O O S O . . .y
L I
S o o S - - S O -

”

* The contents of the message is copied into a system-controlled block of
memory (system buffer)

* Process 0 continues executing other tasks; when process 1 is ready to receive,
the system simply copies the buffered message into the appropriate memory
location controlled by process 1.

e MPI_Bsend & MPI_Brecv

TAGCC TEXAS ADVANCED COMPUTING CENTER

Blocking vs. Non-blocking

Blocking Non-blocking
A blocking send routine will * Send/receive routines return
only return after it is safe to immediately.

modify the buffer. . .
* Non-blocking operations request

that the MPI library perform the

* Safe means that modification operation “when possible”.
will not affect the data to be
sent. * |tis unsafe to modify the buffer

until the requested operation has
been performed. There are wait

* Safe does not imply that the routines used to do this
data was actually received. (MPI_Wait).
« MPI_Send, MPI_Recv * Primarily used to overlap

computation with
communication.

 MPI_Isend, MPI_Irecv

TAGCC TEXAS ADVANCED COMPUTING CENTER

Blocking/Non-Blocking Routines

Description

Blocking send

Syntax for C bindings

MPI_Send(buf, count, datatype, dest, tag, comm)

Blocking receive

MPI Recv(buf, count, datatype, source, tag,
comm, status)

Non-blocking send

MPI Isend(buf, count, datatype, dest, tag,
comm, request)

Non-blocking receive

MPI Irecv(buf, count, datatype, source, tag,
comm, request)

« MPI_Request objects are used by non-blocking send and receive calls.
* MPI Wait()/MPI Waitall()

* Blocking functions

* Pause program execution until outstanding Isend/Irecv calls have

completed.

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Send/Recv Pairs in Code

* Blocking Send & Blocking Recv

IF (rank==0) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ierr)
ELSEIF (rank==1) THEN

CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ierr)
ENDIF

* Non-blocking Send & Blocking Recv

IF (rank==0) THEN

CALL MPI ISEND(sendbuf,count,MPI REAL,1,tag,MPI COMM WORLD,req,ierr)
ELSEIF (rank==1) THEN

CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM _WORLD,status,ierr)
ENDIF
CALL MPI WAIT(req, wait_status)

TAGCC TEXAS ADVANCED COMPUTING CENTER

Deadlock Example

! The following code contains a deadlock... can you spot it?

IF (rank==0) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM _WORLD,status,ierr)
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM _WORLD,ierr)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ierr)
CALL MPI _SEND(sendbuf,count,MPI REAL,0,tag,MPI_COMM WORLD,ierr)

ENDIF

I Solution
IF (rank==0) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM _WORLD,ierr)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ierr)
ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI REAL,0,tag,MPI_COMM WORLD,status,ierr)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ierr)
ENDIF

TAGCC TEXAS ADVANCED COMPUTING CENTER

Alternative Deadlock Solutions

I Solution using sendrecv
IF (rank==0) THEN
CALL MPI_SENDRECV(sendbuf, count,
recvbuf, count,
MPI_COMM_WORLD,
ELSEIF (rank==1) THEN
CALL MPI_SENDRECV(sendbuf, count,
recvbuf, count,
MPI_COMM_WORLD,

ENDIF

MPI_REAL, 1, sendtag,
MPI_REAL, 1, recvtag,
status, ierr)

MPI_REAL, 0, sendtag,
MPI REAL, 0, recvtag,
status, ierr)

I Another possible solution (using all non-blocking calls)

IF (rank==0) THEN

CALL MPI_ISEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,reql,ierr)
CALL MPI_IRECV(recvbuf,count,MPI_ REAL,0,tag,MPI_COMM _WORLD,req2,ierr)

ELSEIF (rank==1) THEN

CALL MPI_ISEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM _WORLD,reql,ierr)
CALL MPI_IRECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req2,ierr)

ENDIF
CALL MPI WAIT(reql, wait_status, ierr)
CALL MPI WAIT(req2, wait _status, ierr)

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

COLLECTIVE COMMUNICATION

TAGCC TEXAS ADVANCED COMPUTING CENTER

Collective Communication

e Defined as communication between > 2
pProcessors

— One-to-many
— Many-to-one
— Many-to-many

* A collective operation requires that all processes
within the communicator group call the same
collective communication function with matching
arguments.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Naive collective communication

* With MPI_Send/Recv, you have all the tools...

if (rank == 0) {
for (int id=1; id<np; id++) {

MPI Send(..., /* dest= */ id, ...);
}
} else {
MPI Recv(..., /* source= */ 0, ...);

}

* This code “broadcasts” information from proc. 0 to all other

processors, but:
* It's too primitive: no room for the OS/hardware to optimize

* |t uses blocking communications (deadlocks!)

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Broadcast Implementation

Provided by MPI

loa

H

Naive Implementation

HH

=

s

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

The Basics of Collective Communications

* Involve ALL processes within a communicator.

* |tisthe programmer’s responsibility to ensure that all processors call
the same collective communication at the same time.

* Type of collective operations
— Synchronization (MPI_Barrier)
— Data Movement (MPI_Bcast/Scatter/Gather/Allgather/AlltoAll)
— Computation (MPI_Reduce/Allreduce/Scan)

* Programming considerations & restrictions
— Collective Communications are blocking operations
— Collective operations on subsets of processes require separate grouping/
new communicators

— The size of data sent must exactly match the size of data received, not
the case for P2P communications

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCEC COMPUTING CENTER

Collective Operation Visualization

broadcast
Data
AO
Y
(Vp)
(g0}
|_
4
AO
AO
AO
AO
g J
Y

Root to all tasks All tasks to root

gather/scatter

A0

Al

A2

A3

gather tl scatter

A0

Al

A2

A3

&

/)

allgather alltoall

A0

AO | A1 | A2 | A3

BO

BO | B1 | B2 | B3

Cco

cojcirj|cz2|c3

DO

DO (D1 (D2 | D3

&

AO | BO | CO | DO AO | BO | CO | DO
AO | BO | CO | DO Al |B1|C1|D1
AO | BO | CO | DO A2 | B2 [C2 | D2
AO | BO | CO | DO A3 | B3 [C3|D3
e -

All tasks to all tasks

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Barrier

MPI BARRIER (comm, ierr)

IN comm Communicator

 Each task waits in the Barrier until all tasks in the communicator have
reached it.

« Can be used when measuring communication/computation time and for
debugging.

« Caution must be exercised to avoid over-synchronization: This will
unnecessarily slow down program execution.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Broadcast

MPI BCAST (buf, count, datatype, root, comm, ierr)

INOUT buf starting address of buffer
IN count number of entries in buffer
IN datatype data type of buffer

IN root rank of broadcast root

IN Comm communicator

* Broadcast a message from the process with rank “root” to all the processes in
the group (in the communicator).

TAGCC TEXAS ADVANCET COMPUTING CENTER

MPI_Scatter

MPI_ SCATTER (sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, root, comm)

IN
IN
IN
ouT
IN
IN
IN
IN

sendbuf address of send buffer

sendcount number of elements sent to each process
sendtype data type of send buffer elements
recvbuf address of receive buffer

Recvcount number of elements in receive buffer
recvtype data type of receive buffer elements
root rank of sending process

comm communicator

The root process divides its send buffer into n equal segments and sends.

Each process receives a segment from the root and places it in its receive
buffer.

The reverse of MPI_Gather

TAGCC TEXAS ADVANCET COMPUTING CENTER

MPI_Gather

MPI_ GATHER (sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, root, comm)

IN sendbuf starting address of send buffer

IN sendcount number of elements in send buffer

IN sendtype data type of send buffer elements

ouT recvbuf address of receive buffer

IN Recvcount number of elements for any single receive
IN recvtype data type of receive buffer elements

IN root rank of receiving process

IN comm Communicator

Each process sends the contents of its send buffer to the root process.

Root stores them in its receive buffer according to the ranks of the senders.

The reverse of MPI_Scatter

TAGCC TEXAS ADVANCEE COMPUTING CENTER

MPI_Allgather

MPI ALLGATHER (sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm)

IN sendbuf starting address of send buffer

IN sendcount number of elements in send buffer

IN sendtype data type of send buffer elements

ouT recvbuf address of receive buffer

IN recvcount number of elements received from any process
IN recvtype data type of receive buffer elements

IN comm communicator

* An MPI_Gather whose result ends up on all processors.

* Each task in the group, in effect, performs a one-to-one broadcasting
operation within the group.

TAGCC TEXAS ADVANCE COMPUTING CENTER

MPI Alltoall

MPI ALLTOALL (sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm)

IN sendbuf starting address of send buffer

IN sendcount number of elements sent to each process

IN sendtype data type of send buffer elements

ouT recvbuf address of receive buffer

IN recvcount number of elements received from any process
IN recvtype data type of receive buffer elements

IN Comm communicator

* Eachtask in a group performs a scatter operation, sending a distinct message to all the
tasks in the group in order, by index.

TAGCC TEXAS ADVANCED COMPUTING CENTER

MPI_Reduce

MPI REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer

ouT recvbuf address of receive buffer on root process
IN count number of elements in send buffer

IN datatype data type of elements of send buffer

IN op reduce operation

IN root rank of root process

IN comm communicator

e Applies a reduction operation on all tasks in the group and places the result in the
receive buffer on the root process.

* Possible operations are MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD, ...

TAGCC TEXAS ADVANCED COMPUTING CENTER

MPI_Allreduce

MPI ALLREDUCE (sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer

ouT recvbuf starting address of receive buffer
IN count number of elements in send buffer

IN datatype data type of elements of send buffer
IN op operation

IN comm communicator

* Applies a reduction operation and places the result in all tasks in the group.

 Equivalent to an MPIl_Reduce followed by MPI_Bcast.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Full List of Reduction Operations

MPI_MAX
MPI_MIN
MPI_SUM
MPI_PROD
MPI_LAND
MPI_BAND
MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR
MPI_MAXLOC
MPI_MINLOC

Maximum
Minimum
Sum
Product
Logical And
Bit-wise And
Logical Or
Bit-wise Or
Logical Xor
Bit-wise Xor
Max value and location

Min value and location

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Collective Communication: Summary

data ———p

w
W
g’éw A A PO | A AB-CD
a p broadcast | , P1| B reduce
1 P2 A P2 | C
P3 A P3| D
*:some operator
PO|A|B|C|D — A PO | A Ny A-B-C-D
P1 it |BH P1| B cadies A-B-C-D
P2 - BE 23 | — AB-C-D
ather
P3 ga 0 P3| D A-B-CD
*:some operator
PO | A R Ble| PO | A A
allgather
P2| C A|lB|C|D plc|—— |aBC
P3| D AlB|C|D P3| D A-B-C:D
*.some operator
PO | AD | A1 | A2 | A3 litoall AD (BO | CO | DO PO [AD | A1 | A2 | A3 A0-B0-C0-D0
anost reduce |a¢.p1.01-01
PI|BO|B1|B2|B3| — ____, |[A1|B1]|C1|DI P1|BO|B1[B2 B3| _ .. 1-C1
p2|co(c1|c2|c3 A2 [B2 | C2 | D2 p2|co|ct|c2|c3 | |A2B2C2D2
o0 [D1 | 02 | D3 A3 (B3 (C3| D3 P3 (D0 | D1 | D2 | D3 A3-83-C3-03

TALGL TEXAS ADVANCED COMPUTING CENTER

Final Thoughts

* Before jumping headfirst into MPI, pause and consider

— Are you implementing something others have already implemented and put into
libraries

— Should you re-use code or develop new code from the ground up

— Map the development cycle and requirements, make sure MPI is the right answer
for you

* |f MPlis the right answer

— Survey existing tools, libraries and functions, code re-use saves time, effort and
frustration

— Map application requirements, procedures and algorithm to existing parallel/
distributed algorithms, avoid reinventing the wheel

— Include “smart” debugging statements in your code, ideally some form of tracing
to be able to track how things go wrong (because chances are, they will go wrong)

TAGCC TEXAS ADVANCED COMPUTING CENTER

Thank you very much

lars@tacc.utexas.edu

Please participate in our survey
http://bit.ly/ASUXSEDE

TAGCC TEXAS ADVANCED COMPUTING CENTER

