
Data Analysis with R in HPC

Weijia Xu, Ph.D

Manager, Data Mining & Statistics
Texas Advanced Computing Center

xwj@tacc.utexas.edu
Apr. 04, 2014

Outline

•  Introduction of R basics

•  Data mining and analysis features in R

•  Scaling up R with high performance
computing resources

Introduction to R Basics

* Based on R tutorial by Lorenza Bordoli

R-project background

•  Origin and History
–  initially written by Ross Ihaka and Robert Gentleman

at Dep. of Statistics of U of Auckland, New Zealand
during 1990s.

–  International project since 1997

•  Open source with GPL license
–  Free to anyone
–  In actively development
–  http://www.r-project.org/

What R does
R is a programming environment for statistical and data
analysis computations.

• Core Package
•  Statistical functions
•  plotting and graphics
•  Data handling and storage

•  predefined data reader
•  textual, regular expressions
•  hashing

•  Data analysis functions
•  Programming support:

• loops, branching, subroutines
• Object Oriented

•  More additional developed packages.

Getting Started

•  Download and install locally from
–  http://www.r-project.org/

•  TACC
–  ssh stampede.tacc.utexas.edu
–  % module load R
–  % R

R command line interface on cluster

R Console interface on Mac

RStudio: A better user interface of R
•  RStudio is a open source graphical user

environment for R users.
–  https://www.rstudio.com/

•  RStudio allow users to
–  Interactive code development
–  Run R scripts
–  Exploring local file system
–  Viewing data file
–  Viewing graphical output from R
–  …

RStudio GUI

Source Editor +
Interactive
highlight+run

Interactive
Console

Session
History

Plots
Management

RStudio GUI

Data Viewer

Package
Management

Variable/
Environment
Viewer

File
Management

RStudio GUI

Project + Source
Control
Integration

Interactive Help

Interactive Help

Web interface of Rstudio on Maverick

•  Users can run an interactive web session with RStudio
using maverick.tacc.utexas.edu

•  The Job script template is in /share/doc/slurm/
job.RStudio

•  On Maverick,
–  Submitting the job with

•  Sbatch /share/doc/slurm/job.Rstudio
–  After the job is running, a URL will be available for connection

e.g.
•  http://maverick.tacc.utexas.edu:12173

•  Then visit the URL and log in with your
account credential

Basic Math operations

•  R as a calculator
–  +, -, /, *, ^, log, exp, …

Variables
•  Numeric

•  Character String

•  Logical

Assigning Values to Variables

•  “<-” or “=“

•  Assign multiple values
–  Concatenate, c()
–  From stdin, scan()
–  Series

•  :
•  Seq()

NA: Missing Value

•  Variables of each data type (numeric, character, logical)
can also take the value NA: not available.

•  NA is not the same as 0
•  NA is not the same as “”
•  NA is not the same as FALSE

• Any operations (calculations, comparisons) that involve
NA may or may not produce NA:

Basic Data Structure

•  Vector
–  an ordered collection of data of the same type
–  a single number is the special case of a vector with 1

element.
–  Usually accessed by index

•  Matrix
–  A rectangular table of data

 of the same type

Basic Data Structure
•  List

–  an ordered collection of data of arbitrary types.
–  name-value pair
–  Accessible by name

Basic Data Structure
•  Hash Table

–  In R, a hash table is the same as a workspace for
variables, which is the same as an environment.

–  Store Key-value pairs.
–  Value can be accessed by key

Dataframes
•  R handles data in objects known as dataframes;

–  rows: data items;
–  columns: values of the different attributes

•  Values in each column should be from the same type.

Read Dataframes From File
•  read.table()

 > worms<-read.table(“worms.txt",header=T,row.names=1)

–  Read tab-delimited file directly.
–  Variable name in header row cannot have space.

•  To see the content of the dataframes (object) just type is
name:
 > worms

the first row contains the variables names

the first column contains data label

path: in double quotes

Selecting Data from Dataframes
•  Subscripts within square brackets

–  [, means “all the rows” and
–  ,] means “all the columns”

•  To select the first three column of the dataframe

Selecting Data from Dataframes

•  names()
–  Get a list of variables attached to the input name

•  attach()
–  Make the variables accessible by name:

 > attach(worms)

Selecting Data from Dataframes
•  Using logic expression while selecting:

subset rows by a
logical vector

subset a column

comparison resulting
in logical vector

subset the
selected rows

Selecting Data From a Dataframe
More examples:

Sorting Data in Data frames

•  order()

>worms[order(worms[,1]),1:6]

 Area Slope Vegetation Soil.pH Damp Worm.density
Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
The.Orchard 1.9 0 Orchard 5.7 FALSE 9
Ashurst 2.1 0 Arable 4.8 FALSE 4
Cheapside 2.2 8 Scrub 4.7 TRUE 4
Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
(…)

State columns to be sorted State the Area for sorting order

Sorting Data in Dataframes

sorted in descending order

•  More on sorting selected

Flow Control

•  If … else

•  loops

if (logical expression) {
 statements
} else {
 alternative statements
}

* else branch is optional

for(i in 1:10) {
 print(i*i)
}

i=1
while(i<=10) {
 print(i*i)
 i=i+sqrt(i)
}

Flow Control

•  apply (arr, margin, fct)
–  Applies the function fct along some dimensions of the vector/

matrix arr, according to margin, and returns a vector or array
of the appropriate size.

Flow Control

•  lapply (list, fct) and sapply (list, fct)
–  To each element of the list li, the

function fct is applied. The result is a
list whose elements are the individual
fct results.

–  Sapply, converting results into a vector
or array of appropriate size

Create Statistical Summary
•  Descriptive summary for numerical variables:

–  arithmetic mean;
–  maximum, minimum, median, 25 and 75 percentiles (first

and third quartile);
•  Levels of categorical variables are counted

Create Plots

•  plot(…)
–  Create scatter plot.

> plot(Area, Soil.pH)

Automatically create
a postscript file with
default name

Other Common Plots

•  Univariate:
–  histograms,
–  density curves,
–  Boxplots, quantile-quantile plots

•  Bivariate:
–  scatter plots with trend lines,
–  side-by-side boxplots

•  Several variables:
–  scatter plot matrices, lattice
–  3-dimensional plots,
–  heatmap

Saving your work

•  history(Inf)
–  To review the command lines entered during the

sessions
•  savehistory(“history.txt”)

–  Save the history of command lines to a text file
•  loadhistory(“history.txt”)

–  read it back into R

•  save(list=ls(),file=“all.Rdata”)
–  The session as a whole can be saved as a binary file.

•  load(“c:\\temp\\ all.Rdata”)
– Read back saved sessions.

Importing and exporting data
There are many ways to get data into R and out of R.

Most programs (e.g. Excel), as well as humans, know
how to deal with rectangular tables in the form of tab-
delimited text files.

> x = read.delim(“filename.txt”)
also: read.table, read.csv

> write.table(x, file=“x.txt”, sep=“\t”)

Getting help
•  “?” Or “help”

Details about a specific command whose name you
know (input arguments, options, algorithm, results):

 e.g.
 >? t.test

 or

 >help(t.test)

Data Mining with R

Data mining with R

•  Many data mining methods are also
supported in R core package or in R modules
–  Kmeans clustering:

•  Kmeans()

–  Decision tree:
•  rpart() in rpart library

–  Nearest Neighbour
•  Knn() in class library

–  …

Additional Libraries and Packages

•  Libraries
–  Comes with Package installation (Core or others)
–  library() shows a list of current installed
–  library must be loaded before use e.g.

•  library(rpart)
•  Packages

–  Developed code/libraries outside the core packages
–  Can be downloaded and installed separately

•  Install.package(“name”)
–  There are currently 2561 packages at

http://cran.r-project.org/web/packages/
•  E.g. Rweka, interface to Weka.

Common Data Mining Methods

•  Clustering Analysis
–  Grouping data object into different bucket.

•  Classification
–  Assigning labels to each data object.
–  Requires training data.

Cluster Analysis
•  Finding groups of objects such

that the objects in a group will be
similar (or related) to one
another and different from (or
unrelated to) the objects in other
groups

–  Inter-cluster distance: maximized
–  Intra-cluster distance: minimized

K-means Clustering
•  Partitional clustering approach
•  Each cluster is associated with a centroid

(center point)
•  Each point is assigned to the cluster with the

closest centroid
•  Number of clusters, K, must be specified
•  The basic algorithm is very simple

An Example of k-means Clustering

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

K=3

Examples are from Tan, Steinbach, Kumar Introduction to Data Mining

K-means clustering Example

login1% more kmeans.R
x<-read.csv("../data/cluster.csv",header=F)
fit<-kmeans(x, 2)
plot(x,pch=19,xlab=expression(x[1]),
 ylab=expression(x[2]))
points(fit$centers,pch=19,col="blue",cex=2)
points(x,col=fit$cluster,pch=19)

> fit
K-means clustering with 2 clusters of sizes 49, 51

Cluster means:
 V1 V2
1 0.99128291 1.078988
2 0.02169424 0.088660

Clustering vector:
 [1] 2
 [38] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [75] 1

Within cluster sum of squares by cluster:
[1] 9.397754 7.489019

Available components:
[1] "cluster" "centers" "withinss" "size"
>

Classification Tasks

Apply
Model

Induction

Deduction

Learn
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning
algorithm

Training Set

Support Vector Machine Classification

•  A distance based classification method.

•  The core idea is to find the best hyperplane to
separate data from two classes.

•  The class of a new object can be determined
based on its distance from the hyperplane.

Binary Classification with Linear Separator

•  Red and blue dots are
representations of
objects from two
classes in the training
data

•  The line is a linear
separator for the two
classes

•  The closets objects to
the hyperplane is the
support vectors.

ρ

SVM Classification Example
install.packages("e1071")
library(e1071)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-svm(x,y)
1-sum(y==predict(fit,x))/length(y))

SVM Classification Example

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
1-sum(y_test==predict(fit,x_test))/length(y_test)

Scaling up R computation with high performance
computing resources

+

=

What to do if the computation is too
big for a single desktop

•  A common user question:
–  I have an existing R solution for my research work.

But the data is growing to big. Now my R program
runs days to finish (/runs out of memory)

•  Three strategies
–  Using automatically offloading with multicore/GPU/

MIC.
–  Break big computation with multiple job

submission
–  Implement code using parallel packages.

Automatic offloading with latest
hardware

•  R is originally designed as for single thread
execution.
–  Slow performance
–  Not scalable with large data

•  R can be built and linked to library utilizes
latest multiple core technology for automatic
parallel execution for some operations, most
commonly, linear algebra related
computations.

Dynamic Library & R
•  MKL provides BLAS/LAPACK routines that can “offload” to the

Xeon Phi Coprocessor, reducing total time to solution

User R script/
function

R interpreter
Code

execution
with pre-built

library

MKL

BLAS

Automatic offloading with latest
hardware

•  Hardware supported:
–  Multiple cores on CPU
–  Intel Xeon Phi coprocessor (on Stampede)
–  GPGPU (on Stampede/Maverick)

•  Libraries supporting automatic offloading
–  Intel Math Kernel Library (MKL)

•  Available on stampede and maverick for users
–  HiPlarB

•  Open source and freely available
•  http://www.hiplar.org/hiplar-b.html

R-2.5 benchmark performance with
automatically hardware accelerration

•  Advantage:
–  No code changes needed
–  User can run R solution as before without

knowledge of the parallel execution.

•  Limitations:
–  Only support limited computational operations.

Break Big Computations with multiple
R jobs

•  Running R in non-interactive session
•  User can submit multiple R jobs with different

command Line parameters
–  Similar to run R batch mode
–  Parameters is specified on the command line
–  Good for repeated runs of same computations or

running script partially

Running R Session in Batch Mode
•  R scripts

–  Put the codes you would input when running
interactively into a text file. e.g.

•  `Batch mode

–  “>R CMD BATCH /path/to/R_SCRIPT”
–  Running R script stored in file “R_SCRIPT”
–  By default the result is stored in R_SCRIPTOut

login1% more mtcars.R
data(mtcars) # load built-in mtcars data table
attach(mtcars) # Attaching mtcars names
names(mtcars) # show column names
summary(mtcars) # show statistical summary of all columns.
detach()
q()

Running R Session in Batch Mode

Running R Session in Batch Mode

login1% cat sample.R
arg1 <-as.numeric(commandArgs()[4])
arg2 <- as.numeric(commandArgs()[5])
paste("Input arguments are ", arg1, arg2, sep=" ")
paste("The sum is ", arg1+arg2, sep="")
q()
n

login1% cat sample.R | R --slave --args 1 2
[1] "Input arguments are 1 2"
[1] "The sum is 3"

login1% cat sample.R | R --slave --args 1231234 54532332
[1] "Input arguments are 1231234 54532332"
[1] "The sum is 55763566"

Like
interactive
mode

Parse arguments

Do something

Running R Script with Parameters

•  Enable more flexibility on computations of
same R script.

login1% more mtcars.R
data(mtcars) # load built-in mtcars data table
attach(mtcars) # Attaching mtcars names
names(mtcars) # show column names
summary(eval(as.name(commandArgs()[4])))
 # show statistical summary of object with specified name
detach()
q()

Running R Script with Parameters

Text Analysis of HathiTrust Corpus
(‘tm’ package, ~1M books)

Guangchen Ruan, Hui Zhang, et al.
http://www.hathitrust.org/htrc

•  Advantages
–  Users only need to develop job submission scripts
–  Each job can use existing R code
–  Good for repeated analysis with different data set

or many independent analysis tasks over large
data set.

•  Limitations
–  A “data-parallel” solution that may not suitable for

simulation based workflow

Running R with parallel packages

•  There are many parallel packages available
to enable parallelism with R

•  Two most common approaches included with
R distribution
–  Multicore
–  Snow/Rmpi

Multicore
•  Utilizes multiple processing core within the

same node.

•  Replace several common functions with
parallel implementations

•  No need of significant changes on the
existing coding process control.

•  Scalability is limited by the number of core
and memory available within single node

Multicore -- mcapply
•  lapply à mcapply

–  lapply(1:30, rnorm)
–  mclapply(1:30, rnorm)

•  mc.cores
–  The maximum number of cores to use

•  mc.preschedule
–  TURE, computation is first divided by the number

of cores.
–  FALSE, one job is spawned for each value

sequentially

Multicore –parallel and collect

•  parallel(expr, name, mc.set.seed = FALSE,
silent = FALSE)
–  Starts a parallel process for evaluating expr,

•  collect(jobs, wait = TRUE, timeout = 0,
intermediate = FALSE)
–  Collects the result from the parallel process.

p <- parallel(1:10)
q <- parallel(1:20)
collect(list(p, q)) # wait for jobs to finish and collect all results

Snow

•  Developed Based on Rmpi package,

•  Simplify the process to initialize parallel process over
cluster.

cl <- makeCluster(4, type='SOCK')

birthday <- function(n) {

 ntests <- 1000
 pop <- 1:365
 anydup <- function(i)

 any(duplicated(
 sample(pop, n,replace=TRUE)))

 sum(sapply(seq(ntests), anydup)) / ntests}

x <- foreach(j=1:100) %dopar% birthday (j)

stopCluster(cl)

Ref: http://www.rinfinance.com/RinFinance2009/presentations/UIC-Lewis%204-25-09.pdf

Snow

•  Provide similar MPI functions on snow
cluster:
–  clusterSplit, clusterCall, ClusterEvalQ,

clusterApply,

clusterApply(cl, 1:2, get("+"), 3)
clusterEvalQ(cl, library(boot))
x<-1
clusterExport(cl, "x")
clusterCall(cl, function(y) x + y, 2)

Snow

•  Provide parallel version of common functions:
–  parLapply, parApply, parSapply
–  Similar to mcapply from mutlicore
–  Need to setup the snow cluster first

cl <- makeCluster(4, type='SOCK’)
parSapply(cl, 1:20, get("+"), 3)

•  Advantage
–  Do whatever you want with them
–  Get the best performance

•  Limitations
–  Need code development
–  In some case, the analysis workflow may need be

changed.

Further references
•  R

–  M. Crawley, Statistics An Introduction using R, Wiley
–  J. Verzani, SimpleR Using R for Introductory Statistics

 http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
–  Programming manual:

•  http://cran.r-project.org/manuals.html

•  Using R for data mining
–  Data Mining with R: Learning with case studies, Luis Togo

•  Contact Info
–  Weijia Xu xwj@tacc.utexas.edu

