Computational Science Skills

- Computational science provides skills needed in the present and future workforce
 - Understanding of modeling techniques that are used in research and business
 - Data management skills
 - Analytical skills
 - Teamwork skills
 - Communications skills
- Inquiry-based education approach engages students in learning
Acquiring the Appropriate Skills

• Begin with basic modeling skills
 – What is a model?
 • Models of physical systems
 • Models of social systems
 – How do you create a model?
 • Understanding cause and effect
 • Representing the relationships in mathematical terms
 – How do you implement the model on the computer
 – How do you know if the model is “right”
Steps Toward Competency

• Investigate how models have been used to gain insights about complex systems
 – Observe and manipulate built models on personal computers
• Use modeling tools to add new components to existing models
• Build new models of interesting systems
• Use the model to explore the system
• Present results in writing and orally
Progression of Technical Skills

• Using modeling tools on a personal computer
• Learning programming skills
• Advancing applied math skills
• Applying skills to the student’s academic major
 – Starting with simple models on personal computers
 – Expanding to large-scale applications on supercomputers
Integrating Materials into the Curriculum

• Model competencies

• http://hpcuniversity.org/educators/competencies/
Goals for the Sessions

• Demonstrate the pedagogy for computational science education

• Progression of possible activities
 – Using complete models to demonstrate principles
 – Running models to gain insights into system behavior
 – Modifying models to relax assumptions
 – Building new models
What We Will Cover

- Introduce materials and models that can be incorporated for classroom use
- Introduce simple tools that can be used to build and demonstrate modeling techniques
- Provide a list of resources you can explore in detail later
Reference Materials

- https://www.osc.edu/~sgordon
 - Choose Workshop Materials
 - Then Links to other materials
Simple Models with Excel

• Open datasets folder
• Open simplepopulation.xlsx
 – Principle – HAVE = HAD + Change
• Open SystemDynamics.xlsx
 – Principle – adding limits to the system
• Open saltdiffusion.xlsx
 – Principle – “I am the average of my neighbors”
More Examples

• Examples from several of the tools we will be using in this workshop along with lesson plans

Systems Models

• There are several systems modeling packages that can provide similar learning experiences
• Vensim
 – Free education version
 – Graphical users interface to modeling
• Open bunnycomparison.mdl
Social Network Analysis

• Social media allows the connection of billions of people across the globe

• Social network analysis examines and analyzed those connections
 – Email exchanges
 – Blog posts
 – Twitter
 – Wikis, etc.
Analyzing Social Media

• Behavior patterns on many issues
 – Who are the key leaders?
 – What are the key questions?
 – How does the discussion change over time?
 – Are there significant subgroups?
 – What are the strengths of the relationships?
Analysis Tools

• NodeXL
 – Addin to Microsoft Excel
 – Companion book with many examples
 • “Analyzing Social Media Networks with NodeXL”
 Hansen, Schneiderman, and Smith

• Extensions to the R Statistical Package
• NetworkX library for python and Sage
• Netminer
Scale of Analysis

• For instruction – PC tools ok
• PCs will not work for very large datasets
• Need tools ported to supercomputers
• SDSC Boot Camp on graph analytics
 – http://www.sdsc.edu/services/data_science/graph_analytics.html
NodeXL Overview

• Open NodeXL Template
• NodeXL Menu
 – Import from several social media sites
 – Tools to create and manipulate a graph
 – Uses other Excel features to allow for further data analysis
• Simple example for today to demonstrate some features
Senate Voting 2007

- Dataset showing US Senate voting records and degree of agreement on voting
- Open senateraw.xls
Building a Simple Model with Vensim

• Let’s now build a simple model of a rabbit population

• From the Start Menu, choose Vensim
 – Choose File New from the menu, 30 for final timestep, 0.125 as the increment, Year for time units

• We are going to add items to the sketch that represent different components of the a simple population model
Some Sketch Tools

- Auxiliary Variable (constant)
- Box Variable (Level)
- Arrow (connects cause and effect)
- Rate
Add to Your Sketch

• Box variable – label as Rabbit Population
 – Click on the tool, drag it to the open area and drop it

• Rate variable
 – Click on tool; click 2 inches to the left of Rabbit Population then click inside of the Box; name it Births
 – Click in the box and then 2 inches to the right – name it deaths

• Note that the diagram represents adding to the population with births and decreasing the population with deaths
More to Add

• Auxiliary variable
 – birth rate (under births)
 – Average lifetime (under deaths)

• Connect the components with the arrow tool
 – Birth rate to births
 – Average lifetime to deaths
 – Population to births
 – Population to deaths

• Make pull on the circle in the last two to get a curved arrow – just for aesthetics

• Save it
The Sketch and the Model

• The logic of the model is in the sketch
 – What does it show?
 – What is left out?

• Now must enter the equations
 – Click on the equations tool (second from right)
 – Unidentified items turn black

• Click on Births
 – Fill in by clicking on the variables and operators
 • Births*Rabbit Population
 • Units – type in rabbits/year
More Model

• Rabbit Population
 – Births – deaths (unit rabbits)
 – Initial value 1000

• Rest
 – Average lifetime = 8 (years)
 – Birth rate = 0.125 (fraction/year)
 – Deaths = rabbit population/average lifetime

• Check the model
 – Model Check Model
 – Model Check Units
Run the Model

• Create the label for the run – equilibrium
• Hit enter or click on the first runner
• To see outcomes
 – Click on a variable then a tool on the side
 – Try it with the graph for Rabbit Population
 – Why did it come out as a constant?
• Change the model
 – Title to Exponential Growth
 – Click on SyntheSim (second runner)
 – Drag birth rate to 0.2
 – Click stop
 – Look at graph
Adding Visualization Tools

- Click on View and choose New
- Insert custom graph
 - Control panel
 - Choose graph
 - Add Name and Title
 - X Axis – (Sel) Time
 - Variable (Sel) Rabbit population
- Drag I/O Object to Pallet
- Output custom graph – choose Rabbit population
Add Slider Bars

• I/O Object
 – Input slider
 – Make one for average lifetime

• Run model interactively

• Can use slider bar and see the impacts
Explore Other Built Models

- http://www.shodor.org/talks-new/vensim/
Not So Secret Agent

• What is an agent?
 – An autonomous entity that acts according to a set of rules or constraints
 – Multiple agents are involved in complex systems, each acting in a particular way
 – Agents that “meet” then interact to produce another set of outcomes
 – The resulting outcomes are often different than one would expect due to the complexity of the interactions
 – Most agent-based models introduce the idea of randomness in the interaction rules – i.e. Monte Carlo simulations
Some Modeling Conveniences

• Agents can act both in space and in time
 – Explicit spatial movement is often important to accurately represent some phenomena
 – More difficult to do with other approaches
 – More realistic representations of spatial phenomena are possible
Some Examples

• Spatially explicit models of the spread of disease
• Growth of urban areas
• Supply chain optimization
• Human cell and immune system models
• Biochemical processes
• Consumer behavior and economics models
Tools

- AgentSheets
- Netlogo
- StarLogo
- Repast (with a supercomputer version)
- Swarm
Let’s Demonstrate

• Open AgentSheets
 – File Open Project
 – Work your way to the Datasets Folder
 – Open Forest Fire

• Opens several windows
 – Worksheet – graphical representation of the space being modeled and the agents in that space
 – Simulation properties – default settings for important variables
 – Gallery – Agents used in this simulation
Running the Model

• Click on the finger in the pallet on the Worksheet window then a tree and Run
 – Observe the behavior – what is the result?
 – Click Stop then Reset
 – Now change the burnprob on Simulation Properties to 5.0
 – How do the results compare?
Agents and Behavior

• Agents can have several states
 – E.G. Tree – green, on fire, burnt over
 – Each state has an editable depiction

• Right click on the tree or click the tree and use the Gallery – Edit Behavior
 – Simple graphical programming environment
 – Click on red border for top component then Explain
 – Notice the other changes of state which produce a change in the agent Tree
Changing the Model

• Let’s suppose that the forest we are working in is most prone to major fires when there are strong winds from a particular direction – E.G. California Santa Anna winds

• How would we change the agent behavior to reflect this idea?
Modifying an Existing Model

• Open Access Fire
 – Same as current model
 – Let’s add some directional information by changing the behavior of the tree
 – Right click on the tree – Edit Behavior
 – Change the reaction of the tree to only seeing trees from the West.
 – Change the burnprob name to burnprobw
 – Edit the simulation properties to change burnpro to burnprobw and set an initial value
 – Try it out and check the logic
Building a New Model

- Frog and the Princess
Reference Materials

• https://www.osc.edu/~sgordon
 – Choose Workshop Materials
 – Then Links to other materials
Our reach will forever exceed our grasp, but, in stretching our horizon, we forever improve our world.