Computational Thinking
Southern University New Orleans Workshop
Steven Gordon (sgordon@osc.edu)
Computational Science Skills

• Computational science provides skills needed in the present and future workforce
 – Understanding of modeling techniques that are used in research and business
 – Data management skills
 – Analytical skills
 – Teamwork skills
 – Communications skills

• Inquiry-based education approach engages students in learning
Acquiring the Appropriate Skills

• Begin with basic modeling skills
 – What is a model?
 • Models of physical systems
 • Models of social systems
 – How do you create a model?
 • Understanding cause and effect
 • Representing the relationships in mathematical terms
 – How do you implement the model on the computer
 – How do you know if the model is “right”
Steps Toward Competency

• Investigate how models have been used to gain insights about complex systems
 – Observe and manipulate built models on personal computers
• Use modeling tools to add new components to existing models
• Build new models of interesting systems
• Use the model to explore the system
• Present results in writing and orally
Progression of Technical Skills

• Using modeling tools on a personal computer
• Learning programming skills
• Advancing applied math skills
• Applying skills to the student’s academic major
 – Starting with simple models on personal computers
 – Expanding to large-scale applications on supercomputers
Integrating Materials into the Curriculum

• Model competencies
• http://hpcuniversity.org/educators/competencies/
Goals for this Session

• Demonstrate the pedagogy for computational science education

• Progression of possible activities
 – Using complete models to demonstrate principles
 – Running models to gain insights into system behavior
 – Modifying models to relax assumptions
 – Building new models
What We Will Cover

• Introduce materials and models that can be incorporated for classroom use
• Introduce simple tools that can be used to build and demonstrate modeling techniques
• Provide a list of resources you can explore in detail later
Reference Materials

- https://www.osc.edu/~sgordon
 - Choose Workshop Materials
 - Then Links to other materials
Starting with Simple Models and Tools

• Can use simple models to illustrate modeling principles and definitions
• Models of change in space and/or time:
 \[\text{HAVE} = \text{HAD} + \text{CHANGE} \]
• Which phenomena employ this basic concept?
• Example – go to datasets folder
• Open SimplePopulation.xls
Mostly hidden Excel Capabilities

• Slider bar
 – Access via Developer menu
 – File/options/customize ribbon
 – Choose All tabs – move Developer and turn it on

• Insert Scroll Bar

• Associate its value with a cell D11

• Value of 50

• Value of D8 is D11/100

• Close this spreadsheet
Another simple model

• I am the average of my neighbors
• Representation of a space by a matrix of values representing location and adjacency
 – 2D or 3D
• What is modeled in this way?
More Excel tricks

• Open saltdiffusion.xlsx
 – Note the matrix of numbers
 – Each cell is calculated as the average of its neighbors
 – In D5 insert 50 or = B5
 – Note the change of color
 – Now use the F9 key to incrementally calculate the results

• Turned calculation to manual

• Added formatting to cells based on value
More Examples

• Examples from several of the tools we will be using in this workshop along with lesson plans

Getting Started

• Point your browser here:

• https://www.osc.edu/~sgordon
 – Choose Workshop Materials
 – Then Links to other materials
Built Models You Can Use in Classroom

• Scroll down the list to Java Applets
 – Choose histogram
 – Ability to examine the impact of categorization on the description of a distribution

• Now scroll to Resources for Computational Modeling
 – Find Shared science instructional modules - PHET
Explore Other Relevant Examples

• Look at sites relevant to your discipline
 – Computational physics
 – Computational chemistry
 – More Shodor examples
 – Engineering
 – Economics
 – And so on
Systems Model Tools

• There are several systems modeling packages that can provide similar learning experiences
 • iThink; Berkeley Madonna; Stella
 • Vensim
 – Free education version
 – Graphical user interface to modeling
• Open bunnycomparison.mdl
Some Sketch Tools

- Auxiliary Variable (constant)
- Box Variable (Level)
- Arrow (connects cause and effect)
- Rate
More Vensim Examples

• Other examples
 – Advanced SIR
 – Pharma model

• Can save runs under different names
• Compare runs on the same graph
• Interactively change parameters to find a target
Explore Other Built Models

- http://www.shodor.org/talks-new/vensim/
Not So Secret Agent

• What is an agent?
 – An autonomous entity that acts according to a set of rules or constraints
 – Multiple agents are involved in complex systems, each acting in a particular way
 – Agents that “meet” then interact to produce another set of outcomes
 – The resulting outcomes are often different than one would expect due to the complexity of the interactions
 – Most agent-based models introduce the idea of randomness in the interaction rules – i.e. Monte Carlo simulations
Some Modeling Conveniences

• Agents can act both in space and in time
 – Explicit spatial movement is often important to accurately represent some phenomena
 – More difficult to do with other approaches
 – More realistic representations of spatial phenomena are possible
Some Examples

- Spatially explicit models of the spread of disease
- Growth of urban areas
- Supply chain optimization
- Human cell and immune system models
- Biochemical processes
- Consumer behavior and economics models
Tools

- AgentSheets
- Netlogo
- StarLogo
- Repast (with a supercomputer version)
- Swarm
Agent Models Tell A Story

• Should describe the behaviors before model building

• Example of simple disease model
 – Agents: People
 – People are either healthy or sick
 – For a contagious disease, what is the story of the interaction of healthy and sick people?
Let’s Demonstrate

• Open AgentSheets
 – File Open Project
 – Work your way to the Datasets Folder
 – Open SimpleSick

• Opens several windows
 – Open Worksheet – graphical representation of the space being modeled and the agents in that space
 – Simulation properties – default settings for important variables
 – Gallery – Agents used in this simulation
Story behind this model

• Agents with two states
• If they “meet” there is some probability that a healthy person will become sick
• Examine the program syntax
Second Example

• Open Access fire (in datasets folder)
• Note there are trees with three states
• Story behind this model
Running the Model

• Click on the finger in the pallet on the Worksheet window then a tree and Run
 – Observe the behavior – what is the result?
 – Click Stop then Reset
 – Now change the burnprob on Simulation Properties to 5.0
 – How do the results compare?
Agents and Behavior

• Agents can have several states
 – E.G. Tree – green, on fire, burnt over
 – Each state has an editable depiction

• Right click on the tree or click the tree and use the Gallery – Edit Behavior
 – Simple graphical programming environment
 – Click on red border for top component then Explain
 – Notice the other changes of state which produce a change in the agent Tree
Changing the Model

• Let’s suppose that the forest we are working in is most prone to major fires when there are strong winds from a particular direction – E.G. California Santa Anna winds

• How would we change the agent behavior to reflect this idea?
Modifying an Existing Model

• Open Access Fire
 – Same as current model
 – Let’s add some directional information by changing the behavior of the tree
 – Right click on the tree – Edit Behavior
 – Change the reaction of the tree to only seeing trees from the West.
 – Change the burnprob name to burnprobw
 – Edit the simulation properties to change burnpro to burnprobw and set an initial value
 – Try it out and check the logic
Moving to Supercomputer Scale

• Once students understand the basic principles of a particular type of model – can scale models to run on supercomputers
• Use community codes or science gateways
• Approach the problems in a similar way
 – Make multiple runs to understand system behavior
 – Pose problems that change a finite set of model parameters to answer specific questions
Other Education and Training Resources

• hpcuniversity.org
• Online training
• XSEDE collaborative online courses
• Journal of Computational Science Education
• ACM SIGHPC Chapter
Questions and Discussion
Reference Materials Reminder

- https://www.osc.edu/~sgordon
 - Choose Workshop Materials
 - Then Links to other materials
Session evaluation

Our reach will forever exceed our grasp, but, in stretching our horizon, we forever improve our world.