An MPI Exercise on Blue Waters
Aaron Weeden, Shodor
2015
http://tinyurl.com/acca-cs-mpi

If you have not already done An OpenMP Exercise on Blue Waters, it is recommended you do
so first.

Also, if you have not already read the slides for MPI: Terminology and Examples, it is
recommend you do so first.

The example used in this exercise uses many files. You may find it helpful to reference this
flowchart to see how they all interact.

For this exercise, you will need two terminal windows connected to Blue Waters. To connect to
Blue Waters, follow the instructions in the Logging In section of A Blue Waters Usage Guide.
Then, open a second window and repeat the process. On Windows, you can open a second
PuTTY window by simply launching the program a second time. On Mac, you can open a
second window in Terminal by typing Command-N.

Request interactive job

In the first window, request an interactive job for 1 hour using 2 nodes with 32 cores each. This
can be accomplished using the following command:

gqsub -I -1 nodes=2:ppn=32:xe -1 walltime=01:00:00<ENTER>

This is slightly different from what we did in the OpenMP exercise. Here, we are asking for 2
nodes instead of 1, because MPI allows us to use more than 1 node in a parallel job.

Request batch job

In the second window, request a batch job that will run the MPI version of the forest fire model
five times each for total process counts between 1 and 64 on two nodes that each have 32
cores. The example script will also generate an output file with each process count and the
average wall time it takes to run with that many processes:

With tabs: qsub ~awee<TAB>f<TAB>/m<TAB>/s<TAB>p<TAB><ENTER>

Without tabs: | qsub ~aweeden/fire/mpi/scale-mpi.pbs<ENTER>

This will give back a job ID. Check the status of the job using this command:

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 1/9



http://tinyurl.com/acca-cs-mpi
https://docs.google.com/document/d/1fsHx6_85ZSW2y8d21_aDCsq5HN1wjZ-VzxQeBCzOy48/edit?usp=sharing
https://docs.google.com/presentation/d/1NuPDm-2iOCSsp7RfhbUWZCgt9pH6S9IckVtzAiC7Iz8/edit?usp=sharing
https://docs.google.com/drawings/d/1FpLbZiL6fblI4CfBrnqIcMcFc1HRsQBfA6OATJcmAvs/edit?usp=sharing
https://docs.google.com/drawings/d/1FpLbZiL6fblI4CfBrnqIcMcFc1HRsQBfA6OATJcmAvs/edit?usp=sharing
https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
http://tinyurl.com/acca-cs-mpi

gstat <job id><ENTER>

You should notice that the status of the job (second-to-last column) is Q, i.e. it is waiting in the
queue. You can run the same qstat command from time to time and notice the status change
from Q to R (running) to C (complete).

Update example code

While you wait for the job to finish, in the second window, update the example fire model code in
your home directory (you should already have a directory called f1ire from doing the OpenMP
exercise). NOTE: doing this update will replace the contents of the mp1 folder. If you have
worked with this directory on your own since the last exercise, make sure to make a backup of
your files. After you have made any needed backups and are ready to replace the contents, the
code can be updated using the following command:

With tabs: cp ~awee<TAB>f<TAB> /m<TAB>/x ~/f<TAB>m<TAB><ENTER>

Without tabs: | cp ~aweeden/fire/mpi/* ~/fire/mpi<ENTER>

Change into the fire directory and into the mp1i directory it contains:

cd ~/fire/mpi<ENTER>

Confirm you are now in the mp1 directory:

pwd<ENTER>

You should get back /u/training/<your username>/fire/mpi

Create strong scaling plots

Inside the mpi directory is a sample file that is the result of running a batch job like the one you
submitted earlier. Open this file in the vi text editor:

vi scale-mpi.out<ENTER>

The contents of the file are pairs of data: the number of MPI processes used and the average
wall time (in seconds) to run the program with that many processes. Highlight the contents of
the file using your mouse/trackpad. On Windows, this causes PuTTY to copy what you have
selected. On Mac, press Command-C to copy.

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 2/9



http://tinyurl.com/acca-cs-mpi

Go to this website in a web browser: http://shodor.org/interactivate/activities/SimplePlot/. In the
text box below the word Data, type the word redgraph followed by a new line, and paste.
Click the button that says Plot/Update. You should get a graph that looks like the following, with
the the x-axis measuring process counts and the y-axis measuring average wall time in
seconds:

PP

X

In the Data box, enter a new line and type the word bluegraph followed by a new line. Keep
this browser page open; you will add more data in the instructions below.

Close the file in vi by typing the following:

:q! <ENTER>

Open a file we used in a previous exercise with data from scaling the OpenMP version:

With tabs: vi ~awee<TAB>f<TAB>/0<TAB>s<TAB>0<TAB><ENTER>

Without tabs: | vi. ~aweeden/fire/omp/scale-omp.out<ENTER>

Copy/paste the data from this file into the Data box on the Simple Plot browser page. Click the
Plot/Update button. You should now get a graph that looks like the following, with the MPI data
in red and the OpenMP data in blue:

v

ppA

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 3/9



http://shodor.org/interactivate/activities/SimplePlot/
http://tinyurl.com/acca-cs-mpi

Notice how the MPI version (red) is slightly faster than the OpenMP version for all core counts,
but the graph still levels out at the same core counts. Once we get beyond 32 processes, we
have gone beyond 1 node, and the MPI version actually slows down because of the amount of
time it takes for the 2 nodes to communicate with each other over the network (network speeds
between nodes are much slower than bus speeds between cores).

Close the file in vi by typing the following:

:q! <ENTER>

Run interactively

These steps should be followed in the first window, the window in which you requested an
interactive job.

Change directories to the example MPI code directory:

cd ~/fire/mpi<ENTER>

Decide how many MPI processes you want to use when running the fire model. There are 32
cores on each of the 2 nodes you requested, so the number of processes should be between 1
and 64, inclusive. You can use higher numbers than 64, but then there will be more than 1
process per core, which will probably hurt performance. Run the program using the command
below:

time aprun -n <number of processes> ./fire-mpi -r 1300 -c 1300 -t 1300<ENTER>

This will run for a few seconds (up to around half a minute) and print the final total percentage of
trees that burned (100%) in a forest with 1300 rows, columns, and time steps. It will also print
the real, user, and sys time. The rea'l time is the wall clock time and is more reliable for
measuring performance than the user and sys times.

Run again using time aprun with a new number of processes after the —n (remember you
can use the up-arrow and down-arrow keys to scroll through your command history, change
commands, and enter them again). What is the new run time?

If you keep changing the number of processes, do you get data similar to the data you saw in
the scale-mpi.out file?

The script that was used to generate the scale-mp1i.out file can be run from an interactive
job. Begin running the script by entering the command below:

./scale-mpi.sh<ENTER>

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 4/9



http://tinyurl.com/acca-cs-mpi

This will first ask you whether you want to erase the scale-mpi.out file. Enter y to say yes.
The script will continue, printing out information about each run of the program: how many
processes were used, and how much wall clock time elapsed.

After the script has run long enough for you to get an idea of what it is doing, terminate it early
by pressing Control-C. You should get back your command prompt.

Open the script in vi:

vi scale-mpi.sh<ENTER>

The third line of this file sets the RANGE of process counts to use when running the script
(starting at 1, going up to 64). Enter vi’'s insert mode by pressing the i key. Change the value of
the range to be (32 40 56 64). Thatis, delete all the numbers from 1 through 24.

The fifth line of the file sets the PROBLEM_SIZE of the model; this is the number of rows,
columns, and time steps in the model. Change the problem size from 1300 to 4000.

The seventh line of the file sets NUM_TRIALS, which is the number of times the script will run
the time aprun command. Change this number from 5 to 1.

Once you have made these changes, press Esc to exit vi's insert mode and enter command
mode. Then, save your changes and quit the file by typing the following:

:wq<ENTER>

Run the script by entering the command below:

./scale-mpi.sh<ENTER>

If it asks you to, enter y to erase the scale-mp1i.out file.
The script will print out a run time for 32, 40, 48, and 56 processes. The script will take a few
minutes to complete. While you are waiting, move ahead to the next section.

Check the batch job’s output

Check on the status of your jobs:

qstat -u <your username><ENTER>

The batch job will be named scale-mpi.pbs. If that job has a status of C (complete) or does
not appear in the list, then follow the steps below. Otherwise, if the job is still in the list with a
status of Q (in the queue) or R (running) come back to these steps later once the job is
complete.

Change back to your home directory:

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 5/9



http://tinyurl.com/acca-cs-mpi

cd<ENTER>

Confirm the output and error files from the job now appear in the list of files:

1s<ENTER>

You should see files in the list with scale-mpi.pbs.o<job ID> (this is the output file) and
scale-mpi.pbs.e<job ID> (this is the error file).

You should also see a file called scale-mp1i.out. Show the contents of the file:

cat scale-mpi.out<ENTER>

Confirm that the contents of the file look very similar to the scale-mp1.out file you opened
earlier.

Run another batch job

Change directories to the example code directory:

cd ~/fire/mpi<ENTER>

Open the file fire-mpi.pbs in vi:

vi fire-mpi.pbs<ENTER>

This file is a script that requests a batch job that runs the executable file. Initially it is set to run
with 32 processes. You can change this number to a different number of processes by replacing
the number 32 after —n with the number you choose. You should also update the nodes= and
ppn= values to have enough nodes and cores to run the process count you picked (node count
times core count should be larger than process count). You will also want to change the
expected wall time to be larger than the average wall time for the number of processes you
chose that you saw when you created the strong scaling plot. The format for the walltime is
HH:MM:SS.

Once you have made the changes, saved and quit the file, you can request a new batch job by
running the following command:

gqsub fire-mpi.pbs<ENTER>
This will give back the job ID.

You can continue to monitor the status of the job using the following command:

gstat <job ID><ENTER>

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 6/9



http://tinyurl.com/acca-cs-mpi

Check back in on the interactive job

In the interactive job (the first window), when the scale—-mp1 . sh script finishes, it creates a
new version of the scale—-mpi .out file. Display the contents of this file:

cat scale-mpi.out<ENTER>

Graph this data in Simple Plot. You should get something similar to the following:

Y

-

AP

X

In this graph, when the number of cores increases beyond 32, there is an initial slowdown
(which we saw in previous graphs), but then a further speedup (which we did not see before).
What this shows us is that even if no further speedup occurs beyond 1 node for a certain
problem size (e.g. 1300), there may be further speedup beyond 1 node for a larger problem

size (e.g. 4000).

Once you are finished using the interactive job, you can end it by typing Control-D or the

following command:

exit<ENTER>

Compile the program

Change directories to the example code directory:

cd ~/fire/mpi<ENTER>

Remove the MPI executable file using the Makefile in that directory:

make clean<ENTER>

Confirm there is no longer a file called fire—-mp1 in the directory:

1s<ENTER>

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 7/9



http://tinyurl.com/acca-cs-mpi

Create the executable file again using the Makefile:

make<ENTER>

This may take a minute or so.

Confirm the new f1ire-mp1 file is now in the directory:

1s<ENTER>

Remove the MPI executable file without using the Makefile:

rm fire-mpi<ENTER>

Confirm the fire-mpi file is no longer there:

1s<ENTER>

Create the executable file without using the Makefile:

cc -o fire-mpi fire-mpi.c<ENTER>

This may take a minute or so.

Confirm the new fire-mpsi file is in the directory:

1s<ENTER>

Finish up with the batch job

Once the batch job is complete, open the output file it produced:

vi fire-mpi.pbs.o<job ID><ENTER>

After the “prologue” it will tell you what percentage of the trees were burned. This should be
100%.

Close the output file without saving changes:

:q! <ENTER>

Open the error file for the job:

vi fire-mpi.pbs.e<job ID><ENTER>

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 8/9



http://tinyurl.com/acca-cs-mpi

The time command writes to the error stream by default, so the real, user, and sys time will
be shown in this error file. Compare the real time to the time you saw earlier in the
scale-mpi.out file for the corresponding number of processes.

This gives you one data point (or % of one if you are going to take an average of 5 runs for each
data point). See if you can do multiple runs with different numbers of processes and generate
data points like those found in the scale-mp1 .out file without using the automated
scale-mp1i.pbs or scale-mpi.sh scripts to create this file.

Additional work

As in the OpenMP version, an ASCII visualization can be generated using the —o option. This
will not be covered in this exercise. If you would like to do this, see An OpenMP Exercise on
Blue Waters for instructions, replacing the executable name fire-omp with fire-mpi.

Either in an interactive or batch job, you can explore running the fire-mpi executable with
different parameters as explained in A Blue Waters Usage Guide.

If you wish to view or change the source code of the model, it is available in the file
~/fire/mpi/fire-mpi.c. If you wish to create a new executable based on the changes you
made, enter the make command again from within the mp1 directory.

To see how the MPI version of the code compares to the serial version, download this file and
open it in a web browser. The serial version is shown on the left, and the MPI version is shown
on the right, with the differences highlighted.

An MPI Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-mpi
Page 9/9



https://docs.google.com/document/d/1fsHx6_85ZSW2y8d21_aDCsq5HN1wjZ-VzxQeBCzOy48/edit?usp=sharing
https://docs.google.com/document/d/1fsHx6_85ZSW2y8d21_aDCsq5HN1wjZ-VzxQeBCzOy48/edit?usp=sharing
https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
https://drive.google.com/open?id=0BwjWjx10VHA8a3Q3d2xZLWc2cDA
http://tinyurl.com/acca-cs-mpi

