An OpenMP Exercise on Blue Waters
Aaron Weeden, Shodor
2015
http://tinyurl.com/acca-cs-omp

If you have not already read the slides for Parallel Computing and OpenMP: Terminology and
Examples, | recommend you do so first.

Also, if you have not already read A Blue Waters Usage Guide, | recommended you do so first.

The example used in this exercise uses many files. You may find it helpful to reference this
flowchart to see how they all interact.

For this exercise, you will need two terminal windows connected to Blue Waters. To connect to
Blue Waters, follow the instructions in the Logging In section of A Blue Waters Usage Guide.
Then, open a second window and repeat the process. On Windows, you can open a second
PuTTY window by simply launching the program a second time. On Mac, you can open a
second window in Terminal by typing Command-N.

Request interactive job

In the first window, request an interactive job for 1 hour using 1 node with 32 cores. This can be
accomplished using the following command:

gqsub -I -1 nodes=1:ppn=32:xe -1 walltime=01:00:00<ENTER>

Request batch job

In the second window, request a batch job that will run the OpenMP version of the forest fire
model five times each for thread counts between 1 and 32 on a single node with 32 cores. The
example script will also generate an output file with each thread count and the average wall time
it takes to run with that many threads:

With tabs: gqsubl ~awee<TAB>f<TAB>/0o<TAB>s<TAB>p<TAB><KENTER>

Without tabs: | qsub ~aweeden/fire/omp/scale-omp.pbs<ENTER>

This will give back a job ID. Check the status of the job using this command:

gstat <job id><ENTER>

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 1/7

http://tinyurl.com/acca-cs-omp
https://docs.google.com/presentation/d/1b8I7kD2ACpvOSxFoVL9R3G5ZxEN2anJbjpNfg-ckiYY/edit?usp=sharing
https://docs.google.com/presentation/d/1b8I7kD2ACpvOSxFoVL9R3G5ZxEN2anJbjpNfg-ckiYY/edit?usp=sharing
https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
https://drive.google.com/open?id=1sRmE8wukcL-2oSsH6hiAtiRZE1b68JglKMd0S-zwzlc
https://drive.google.com/open?id=1sRmE8wukcL-2oSsH6hiAtiRZE1b68JglKMd0S-zwzlc
https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
http://tinyurl.com/acca-cs-omp

You should notice that the status of the job (second-to-last column) is Q, i.e. it is waiting in the
queue. You can run the same qstat command from time to time and notice the status change
from Q to R (running) to C (complete).

Copy example code
While you wait for the job to finish, in the second window, copy the example fire model code

directory into your home directory (if you have not already done so as explained in A Blue
Waters Usage Guide). This can be accomplished using the following command:

With tabs: cp -r. ~awee<TAB>f<TAB> ~<ENTER>

Without tabs: cp -r ~aweeden/fire ~<ENTER>

Confirm the example code directory is now in your home directory by listing the contents of your
home directory:

1s! ~<ENTER>

You should see a directory named fire. Change into this directory and into the omp directory it
contains:

cd ~/fire/omp<ENTER>

Confirm you are now in the omp directory:

pwd<ENTER>

You should get back /u/training/<your username>/fire/omp

Create strong scaling plot

Inside the omp directory is a sample file that is the result of running a batch job like the one you
submitted earlier. Open this file in the vi text editor:

vi scale-omp.out<ENTER>

The contents of the file are pairs of data: the number of OpenMP threads used and the average
wall time in seconds to run the program with that many threads. Highlight the contents of the file
using your mouse/trackpad. On Windows, this causes PuTTY to copy what you have selected.
On Mac, press Command-C to copy.

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 2/7

https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
http://tinyurl.com/acca-cs-omp

Go to this website in a web browser: http://shodor.org/interactivate/activities/SimplePlot/. Click in
the text box below the word Data, and paste. Click the button that says Plot/Update. You
should get a graph that looks like the following:

Y

4

Close the file in vi by typing the following:

:q! <ENTER>

Run interactively

Check on the status of your jobs:

qstat -u <your username><ENTER>

The interactive job will be named STDIN. If that job has a status of R (running), then follow the
steps in this section. Otherwise, skip them for now and come back to them later once the job is
running.

These steps should be followed in the first window, the window in which you requested an
interactive job.

Change directories to the example OpenMP code directory:

cd ~/fire/omp<ENTER>

Decide how many OpenMP threads you want to use when running the fire model. There are 32
cores on the node you requested, so the number of threads should be between 1 and 32,
inclusive. You can use higher numbers than 32, but then there will be more than 1 thread per
core, which will probably hurt performance. Set the number of threads by running this
command:

export. OMP_NUM_THREADS=<number of threads><ENTER>

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 3/7

http://shodor.org/interactivate/activities/SimplePlot/
http://tinyurl.com/acca-cs-omp

Run the OpenMP program, using the same number of threads you picked above:

aprun -n 1 -d <number of threads> ./fire-omp -r 1300 -c 1300 -t
1300<ENTER>

This will run for a few seconds (up to around half a minute) and print the final total percentage of
trees that burned (100%) in a forest with 1300 rows, columns, and time steps.

Run the same command again, but this time keep track of how much wall clock time elapses by
adding time to the front of the command (remember that you can type the up-arrow key to get
back the same command you just entered):

time aprun -n 1/ -d <number of threads> ./fire-omp -r 1300 -c 1300 -t
1300<ENTER>

This will print the real, user, and sys time. The real time is the wall clock time and is more
reliable for measuring performance than the user and sys times.

Change the number of threads using the export OMP_NUM_THREADS= command and run
again using time aprun with the new number of threads after the —d (remember you can use
the up-arrow and down-arrow keys to scroll through your command history and enter commands
again). What is the new run time?

If you keep changing the number of threads, do you get data similar to the data you saw in the
scale-omp.out file?

There is a sample ASCII visualization of the fire model that you can view using the following
command:

less fire-omp.out<ENTER>

To advance the visualization, hold down the spacebar. To rewind, hold Control-B. To jump to
the beginning, type lower-case g. To jump to the end, type capital G. To quit, type q.

Generate your own ASCII visualization data by using the —o option followed by a filename that
does not yet exist:

aprun -n 1 -d <number of threads> ./fire-omp -o
fire-omp.2.o0ut<ENTER>

This will create a file called fire-omp.2.out, which you can also view using the less
command:

less fire-omp.2.o0ut<ENTER>

Change the burn probability to 50% and generate a new visualization file:

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 4/7

http://tinyurl.com/acca-cs-omp

aprun. -n 1 -d <number of threads> ./fire-omp -b 50 -o fire-omp.3.out<ENTER>

This will create a file called fire-omp.3.out, which you can also view using the less
command:

less fire-omp.3.0ut<ENTER>

Notice how the visualization is different when the burn probability is 50% as opposed to the
default of 100%.

Change the number of time steps to be larger and generate a new visualization file:

aprun -n 1 -d <number of threads> ./fire-omp -b 50 -t 50 -o fire-omp.4.out<ENTER>

This will create a file called fire-omp.4.out, which you can also view using the less
command:

less fire-omp.4.o0ut<ENTER>

Once you are finished running the interactive job, you can end it by typing Control-D or the
following command:

exit<ENTER>

Check the batch job’s output

Check on the status of your jobs:

qstat -u <your username><ENTER>

The batch job will be named scale-omp.pbs. If that job has a status of C (complete), then
follow the steps below. Otherwise, come back to these steps later once the job is complete.

Change back to your home directory:

cd<ENTER>

Confirm the output and error files from the job now appear in the list of files:

1s<ENTER>

You should see files in the list with scale-omp.pbs.o<job ID> (this is the output file) and
scale-omp.pbs.e<job ID> (thisis the error file).

You should also see a file called scale-omp.out. Open this file in the vi text editor
(Instructions for using vi are available in A Blue Waters Usage Guide):

vi scale-omp.out<ENTER>

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 5/7

https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
http://tinyurl.com/acca-cs-omp

Confirm that the contents of the file look very similar to the scale-omp.out file you opened
earlier.

Run another batch job

Change directories to the example code directory:

cd ~/fire/omp<ENTER>

Open the file fire-omp.pbs in vi:

vi fire-omp.pbs<ENTER>

This file is a script that requests a batch job that sets the number of OpenMP threads and runs
the program. Initially it is set to run with 32 threads. You can change this number to a smaller
number of threads by replacing all occurrences of the number 32 in the file with the number you
choose. You will also want to change the expected wall time to be larger than the average wall
time for the number of threads you chose that you saw when you created the strong scaling
plot. The format for the walltime is HH:MM: SS.

Once you have made the changes, you can request a new batch job by running the following
command:

gqsub fire-omp.pbs<ENTER>
This will give back the job ID.

You can continue to monitor the status of the job using the following command:

gstat <job ID><ENTER>

Once the batch job is complete, open the output file it produced:

vi fire-omp.pbs.o<job ID><ENTER>

After the “prologue” it will tell you what percentage of the trees were burned. This should be
100%.

Close the output file without saving changes:

:q!<ENTER>

Open the error file for the job:

vi fire-omp.pbs.e<job ID><ENTER>

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 6/7

http://tinyurl.com/acca-cs-omp

The time command writes to the error stream by default, so the real, user, and sys time will
be shown in this error file. Compare the real time to the time you saw earlier in the
scale-omp.out file for the corresponding number of threads.

This gives you one data point (or % of one if you are going to take an average of 5 runs for each
data point). See if you can do multiple runs with different numbers of threads and generate data
points like those found in the scale-omp.out file without using the automated
scale-omp.pbs or scale-omp.sh scripts to create this file.

Either in an interactive or batch job, explore running the fire—-omp executable with different
parameters as explained in A Blue Waters Usage Guide.

If you wish to view the source code for the fire model, it is available in the file
~/fire/omp/fire-omp.c.

To see how the OpenMP version of the code compares to the serial version, download this file
and open it in a web browser. The serial version is shown on the left, and the OpenMP version
is shown on the right, with the differences highlighted.

An OpenMP Exercise on Blue Waters, A. Weeden, Shodor, 2015
http://tinyurl.com/acca-cs-omp
Page 7/7

https://docs.google.com/document/d/1qeKXxRVvskG1S84rDSTAMZXTWwcPa5obKEpnw7nWSMA/edit?usp=sharing
https://drive.google.com/open?id=0BwjWjx10VHA8X2E2eEQzZ2lIVjQ
http://tinyurl.com/acca-cs-omp

