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Review

It is recommended to first review the slides on Parallel Computing and OpenMP.
They cover some key terms that will be used in these slides.



https://docs.google.com/presentation/d/1b8I7kD2ACpvOSxFoVL9R3G5ZxEN2anJbjpNfg-ckiYY/edit?usp=sharing

MPI

Standard for distributed memory parallelism.

Allows for multiple nodes (or just multiple cores) to run a program in parallel.
Stands for Message Passing Interface (more on that on the next slide).
Utilizes function calls as opposed to compiler directives.

Syntax example: send a message:

MPI_Send(&buffer, count, MPI_INT, destination, tag,
MPI_COMM_WORLD) ;



Key Term: Process

e MPI entity that can use a core to execute instructions.

e Does NOT share memory with other processes.

e (Can send and receive messages to and from other processes (hence
Message Passing Interface).

e Each process executes a copy of the same program.
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Key Term: Communicator

e A collection of MPI processes that can send and receive messages to and
from each other.

e Normally this is all of the processes, and there is a constant defined for it,
MPI_COMM_WORLD.
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Key Term: Rank

e Unique identifier for each process in the communicator.
e Usually an integer starting at 0 and counting upwards.




Key Term: Size

e Number of processes in a communicator.
e Same for all processes in the communicator.




Key Term: Boss/Master

e Optional, single process in the communicator with different tasks to do than
the others.

e Sometimes assigns work to the other processes (hence boss).

e Usually rank 0.
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MPI Program Execution

e Each process executes a copy of the same program with a different value for

the rank.
e If only certain processes should do certain instructions, use the rank to

distinguish these.
e Example:

if (rank == BOSS) {
/* send work x/

}

else {
/* receive work x/



The 6 Basic MPI Routines

1. Initialize the communicator.
2. Setmy rank.

3. Setthe size.

4. Send a message.

5. Receive a message.

6. Finalize the communicator.



MPI Algorithm for Forest Fire Model

e Same basic model as OpenMP version, with a few extra tasks (shown below
in blue).
e Data
o Trees (for checking trees)
o NewTrees (for changing trees)
e Tasks

o DistributeRows: Each process assigns itself some of the rows of the forest.
o InitData: One of the processes lights the center tree on fire.
e For each time step:
o ContinueBurning: For trees already burning that haven’t burnt out, burn another step.
o CommunicateBoundaries: Each process communicates tree data to its neighbor
processes.

o BurnNew: For trees next to a burning neighbors, catch on fire with some probability.
o AdvanceTime: Copy NewTrees into Trees.
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Differences with OpenMP

e Processes instead of threads.

e Memory is distributed, not shared.

e For a process to read a value in another process’ memory, a message has to
be sent and received.

e No need for locks, because one process cannot read another process’
memory directly.

e Requires writing more code (not just sticking directives above for loops).

e Allows a program to be scaled across more than 1 node.



Strong Scaling of MPI Forest Fire

Jump from using 1 node
to using 2 nodes : same
flat line with extra time
for inter-node
communication

.......




Strong Scaling Comparison of OpenMP and MPI

e MPI: Red
e OpenMP: Blue

e Note: not every
MPI program is
faster than its
OpenMP
counterpart, though
that is the case here.




Strong Scaling with a Bigger Problem Size

e Before the problem size was 1300 rows, columns, and time steps.

e Now the problem size is 4000 rows, columns, and time steps.

e Justlooking at process counts of 32, 40, 56, and 64, we see a slight
slowdown from 32 to 40, but then a continual speedup.

e OpenMP is unable to v a,

scale beyond 1 node «
(32 cores for Blue

Waters), so it cannot h
achieve the speed of

64 MPI processes for

this problem size. _
Jump from using 1 node

to using 2 nodes




MP| Example Communication: Send

e One process sends a buffer of data to another process.
e Forest fire example: process 1 sends its bottom row of trees to process 2.
e C syntax:

MPI_Send(SendBuf, /x buffer x/
NColsPlusBounds, /* count */
MPI_INT, /* type %/ 11— |
2, /* rank of receiver x/
O, /* message tag x*/
MPI_COMM_WORLD); /* communicator */




MP| Example Communication: Receive

e One process receives a buffer of data from another process.
e Forest fire example: process 2 receives its top row of trees from process 1.

e C syntax:

MPI_Recv (RecvBuf,
NColsPlusBounds,
MPI_INT,

1,

0,
MPI_COMM_WORLD,
&status);

buffer x/

count */

type */ 1| — 2
rank of sender */
message tag */
communicator x/
struct with info about sent message x/




MPI| Example Communication: Reduce

C syntax:

MPI_Reduce (&NBurnedTrees,
&i,

1,

MPI_INT,

MPI_SUM,

0,

MPI_COMM_WORLD) ;

All processes contribute a buffer of data.

An operation is performed on the data (e.g. sum, min, max).
One process receives the result.
Forest fire example: sum the number of burned trees.

send buffer x/ 1

receive buffer x/
count */

type */

operation */

rank of receiver x/
communicator x/




MPI| Example Communication: Broadcast

e One process sends a buffer of data to all processes (including itself).
e All processes replace their copy of the buffer with the sender’s copy.
e Forest fire example: boss broadcasts whether input parameters are valid.
e C syntax:
0 |-

MPI_Bcast(&AreParamsValid, /x buffer x/

1, /*x count %/ 1 /;;7§§:\

MPI_INT, /* type */
®, /* rank of sender x/ 2 3

MPI_COMM_WORLD); /* communicator */



