
MPI: Terminology and
Examples

Aaron Weeden
Shodor Education Foundation, Inc.

2015

1

It is recommended to first review the slides on Parallel Computing and OpenMP.
They cover some key terms that will be used in these slides.

Review

2

https://docs.google.com/presentation/d/1b8I7kD2ACpvOSxFoVL9R3G5ZxEN2anJbjpNfg-ckiYY/edit?usp=sharing

● Standard for distributed memory parallelism.
● Allows for multiple nodes (or just multiple cores) to run a program in parallel.
● Stands for Message Passing Interface (more on that on the next slide).
● Utilizes function calls as opposed to compiler directives.
● Syntax example: send a message:

MPI_Send(&buffer, count, MPI_INT, destination, tag,
 MPI_COMM_WORLD);

MPI

3

● MPI entity that can use a core to execute instructions.
● Does NOT share memory with other processes.
● Can send and receive messages to and from other processes (hence

Message Passing Interface).
● Each process executes a copy of the same program.

Key Term: Process

Instruction 0 Instruction 1 Instruction 2 Instruction 3

Instruction 0 Instruction 1 Instruction 2 Instruction 3

Instruction 0 Instruction 1 Instruction 2 Instruction 3

Process 0:

Process 1:

Process 2:

● A collection of MPI processes that can send and receive messages to and
from each other.

● Normally this is all of the processes, and there is a constant defined for it,
MPI_COMM_WORLD.

Key Term: Communicator

● Unique identifier for each process in the communicator.
● Usually an integer starting at 0 and counting upwards.

Key Term: Rank

1

3

0

2

4

● Number of processes in a communicator.
● Same for all processes in the communicator.

Key Term: Size

5

5

5

5

5

● Optional, single process in the communicator with different tasks to do than
the others.

● Sometimes assigns work to the other processes (hence boss).
● Usually rank 0.

Key Term: Boss/Master

1

3

0

2

4

● Each process executes a copy of the same program with a different value for
the rank.

● If only certain processes should do certain instructions, use the rank to
distinguish these.

● Example:

if (rank == BOSS) {
 /* send work */
}
else {
 /* receive work */
}

MPI Program Execution

1. Initialize the communicator.

2. Set my rank.

3. Set the size.

4. Send a message.

5. Receive a message.

6. Finalize the communicator.

The 6 Basic MPI Routines

● Same basic model as OpenMP version, with a few extra tasks (shown below
in blue).

● Data
○ Trees (for checking trees)
○ NewTrees (for changing trees)

● Tasks
○ DistributeRows: Each process assigns itself some of the rows of the forest.
○ InitData: One of the processes lights the center tree on fire.

● For each time step:
○ ContinueBurning: For trees already burning that haven’t burnt out, burn another step.

○ CommunicateBoundaries: Each process communicates tree data to its neighbor
processes.

○ BurnNew: For trees next to a burning neighbors, catch on fire with some probability.
○ AdvanceTime: Copy NewTrees into Trees.

MPI Algorithm for Forest Fire Model

MPI Algorithm for Forest Fire Model

DistributeRows CommunicateBoundaries

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

● Processes instead of threads.
● Memory is distributed, not shared.
● For a process to read a value in another process’ memory, a message has to

be sent and received.
● No need for locks, because one process cannot read another process’

memory directly.
● Requires writing more code (not just sticking directives above for loops).
● Allows a program to be scaled across more than 1 node.

Differences with OpenMP

Strong Scaling of MPI Forest Fire

Jump from using 1 node
to using 2 nodes : same
flat line with extra time
for inter-node
communication

Strong Scaling Comparison of OpenMP and MPI
● MPI: Red
● OpenMP: Blue

● Note: not every
MPI program is
faster than its
OpenMP
counterpart, though
that is the case here.

Strong Scaling with a Bigger Problem Size
● Before the problem size was 1300 rows, columns, and time steps.
● Now the problem size is 4000 rows, columns, and time steps.
● Just looking at process counts of 32, 40, 56, and 64, we see a slight

slowdown from 32 to 40, but then a continual speedup.
● OpenMP is unable to

scale beyond 1 node
(32 cores for Blue
Waters), so it cannot
achieve the speed of
64 MPI processes for
this problem size.

Jump from using 1 node
to using 2 nodes

MPI Example Communication: Send
● One process sends a buffer of data to another process.
● Forest fire example: process 1 sends its bottom row of trees to process 2.
● C syntax:

MPI_Send(SendBuf, /* buffer */
 NColsPlusBounds, /* count */
 MPI_INT, /* type */
 2, /* rank of receiver */
 0, /* message tag */
 MPI_COMM_WORLD); /* communicator */

1 2

MPI Example Communication: Receive
● One process receives a buffer of data from another process.
● Forest fire example: process 2 receives its top row of trees from process 1.
● C syntax:

MPI_Recv(RecvBuf, /* buffer */
 NColsPlusBounds, /* count */
 MPI_INT, /* type */
 1, /* rank of sender */
 0, /* message tag */
 MPI_COMM_WORLD, /* communicator */
 &status); /* struct with info about sent message */

1 2

MPI Example Communication: Reduce
● All processes contribute a buffer of data.
● An operation is performed on the data (e.g. sum, min, max).
● One process receives the result.
● Forest fire example: sum the number of burned trees.
● C syntax:

MPI_Reduce(&NBurnedTrees, /* send buffer */
 &i, /* receive buffer */
 1, /* count */
 MPI_INT, /* type */
 MPI_SUM, /* operation */
 0, /* rank of receiver */
 MPI_COMM_WORLD); /* communicator */

0

1

2 3

4+

● One process sends a buffer of data to all processes (including itself).
● All processes replace their copy of the buffer with the sender’s copy.
● Forest fire example: boss broadcasts whether input parameters are valid.
● C syntax:

MPI_Bcast(&AreParamsValid, /* buffer */
 1, /* count */
 MPI_INT, /* type */
 0, /* rank of sender */
 MPI_COMM_WORLD); /* communicator */

MPI Example Communication: Broadcast

0

1

2 3

4

