[C Fragment 1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/* Model of a forest fire - a 2D rectangular grid of trees is initialized
with one random tree caught on fire. At each time step, trees that are not
on fire yet check their neighbors to the north, east, south, and west, and
if any of them are on fire, the tree catches fire with some percent chance.
The model runs for a certain number of time steps, which can be controlled
by the user. At the end of the simulation, the program outputs the total
percentage of trees burned. Tree data can also be output at each time step
if a filename is provided by the user.
*/
/* Author: Aaron Weeden, Shodor, 2015 */
/* Naming convention:
ALL_CAPS for constants
CamelCase for globals and functions
lowerCase for locals
*/
#include <stdbool.h> /* bool type */
#include <stdio.h> /* printf() */
#include <stdlib.h> /* atoi(), exit(), EXIT_FAILURE, malloc(), free(),
random() */
#include <string.h> /* strcpy() */
#include <unistd.h> /* getopt() */
/* Define descriptions of command line options */
#define N_ROWS_DESCR \
"The forest has this many rows of trees (positive integer)"
#define N_COLS_DESCR \
"The forest has this many columns of trees (positive integer)"
#define BURN_PROB_DESCR \
"Chance of catching fire if next to burning tree (positive integer [0..100])"
#define N_MAX_BURN_STEPS_DESCR \
"A burning tree stops burning after this many time steps (positive integer bigger than 1)"
#define N_STEPS_DESCR \
"Run for this many time steps (positive integer)"
#define RAND_SEED_DESCR \
"Seed value for the random number generator (positive integer)"
#define OUTPUT_FILENAME_DESCR \
"Filename to output tree data at each time step (file must not already exist)"
#define IS_RAND_FIRST_TREE_DESCR \
"Start the first on a random first tree as opposed to the middle tree"
/* Define default values for simulation parameters - each of these parameters
can also be changed later via user input */
#define N_ROWS_DEFAULT 21
#define N_COLS_DEFAULT N_ROWS_DEFAULT
#define BURN_PROB_DEFAULT 100
#define N_MAX_BURN_STEPS_DEFAULT 2
#define N_STEPS_DEFAULT N_ROWS_DEFAULT
#define RAND_SEED_DEFAULT 1
#define DEFAULT_IS_OUTPUTTING_EACH_STEP false
#define DEFAULT_IS_RAND_FIRST_TREE false
/* Define characters used on the command line to change the values of input
parameters */
#define N_ROWS_CHAR 'r'
#define N_COLS_CHAR 'c'
#define BURN_PROB_CHAR 'b'
#define N_MAX_BURN_STEPS_CHAR 'm'
#define N_STEPS_CHAR 't'
#define RAND_SEED_CHAR 's'
#define OUTPUT_FILENAME_CHAR 'o'
#define IS_RAND_FIRST_TREE_CHAR 'f'
/* Define options string used by getopt() - a colon after the character means
the parameter's value is specified by the user */
const char GETOPT_STRING[] = {
N_ROWS_CHAR, ':',
N_COLS_CHAR, ':',
BURN_PROB_CHAR, ':',
N_MAX_BURN_STEPS_CHAR, ':',
N_STEPS_CHAR, ':',
RAND_SEED_CHAR, ':',
OUTPUT_FILENAME_CHAR, ':',
IS_RAND_FIRST_TREE_CHAR
};
/* Define a mapping from the row and column of a given tree in a forest with
boundaries to the index of that tree in a 1D array that includes
boundaries */
#define TREE_MAP(row, col, nColsPlusBounds) ((row) * (nColsPlusBounds) + (col))
/* Define a mapping from the row and column of a given tree in a forest with
boundaries to the index of that tree in a 1D array that does not include
boundaries */
#define NEW_TREE_MAP(row, col, nCols) ((row - 1) * (nCols) + (col - 1))
/* Declare global parameters */
int NRows = N_ROWS_DEFAULT;
int NCols = N_COLS_DEFAULT;
int BurnProb = BURN_PROB_DEFAULT;
int NMaxBurnSteps = N_MAX_BURN_STEPS_DEFAULT;
int NSteps = N_STEPS_DEFAULT;
int RandSeed = RAND_SEED_DEFAULT;
bool IsOutputtingEachStep = DEFAULT_IS_OUTPUTTING_EACH_STEP;
bool IsRandFirstTree = DEFAULT_IS_RAND_FIRST_TREE;
char *OutputFilename;
/* Declare other needed global variables */
bool AreParamsValid = true; /* Do the model parameters have valid values? */
int NTrees; /* Total number of trees in the forest */
int NRowsPlusBounds; /* Number of rows of trees plus the boundary rows */
int NColsPlusBounds; /* Number of columns of trees plus the boundary columns */
int NTreesPlusBounds; /* Total number of trees plus the boundaries */
int MiddleRow; /* The tree in the middle is here. If an even number of rows,
this tree is just below the middle */
int MiddleCol; /* The tree in the middle is here. If an even number of cols,
this tree is just to the right of the middle */
int CurStep; /* The current time step */
int NBurnedTrees; /* The total number of burned trees */
char ExeName[32]; /* The name of the program executable */
int NMaxBurnStepsDigits; /* The number of digits in the max burn steps; used for
outputting tree data */
int *Trees; /* 1D tree array, contains a boundary around the outside of the
forest so the same neighbor checking algorithm can be used on
all cells */
int *NewTrees; /* Copy of 1D tree array - used so that we don't update the
forest too soon as we are deciding which new trees
should burn -- does not contain boundary */
FILE *OutputFile; /* For outputting tree data to a file */
/* DECLARE FUNCTIONS */
/* Prints out a description of an integer command line option
@param optChar The character used to specify the option
@param optDescr The description of the option
@param optDefault The default value of the option
*/
void DescribeOptionInt(const char optChar, const char *optDescr,
const int optDefault) {
fprintf(stderr, "-%c : \n\t%s\n\tdefault: %d\n", optChar, optDescr,
optDefault);
}
/* Prints out a description of a string command line option
@param optChar The character used to specify the option
@param optDescr The description of the option
*/
void DescribeOptionNoDefault(const char optChar, const char *optDescr) {
fprintf(stderr, "-%c : \n\t%s\n", optChar, optDescr);
}
/* Print an error message
@param errorMsg Buffer containing the message
*/
void PrintError(const char *errorMsg) {
fprintf(stderr, "%s", errorMsg);
AreParamsValid = false;
}
/* Display to the user what options are available for running the program and
exit the program in failure
@param errorMsg The error message to print
*/
void PrintUsageAndExit() {
fprintf(stderr, "Usage: ");
fprintf(stderr, "%s [OPTIONS]\n", ExeName);
fprintf(stderr, "Where OPTIONS can be any of the following:\n");
DescribeOptionInt(N_ROWS_CHAR, N_ROWS_DESCR, N_ROWS_DEFAULT);
DescribeOptionInt(N_COLS_CHAR, N_COLS_DESCR, N_COLS_DEFAULT);
DescribeOptionInt(BURN_PROB_CHAR, BURN_PROB_DESCR, BURN_PROB_DEFAULT);
DescribeOptionInt(N_MAX_BURN_STEPS_CHAR, N_MAX_BURN_STEPS_DESCR,
N_MAX_BURN_STEPS_DEFAULT);
DescribeOptionInt(N_STEPS_CHAR, N_STEPS_DESCR, N_STEPS_DEFAULT);
DescribeOptionInt(RAND_SEED_CHAR, RAND_SEED_DESCR, RAND_SEED_DEFAULT);
DescribeOptionNoDefault(OUTPUT_FILENAME_CHAR, OUTPUT_FILENAME_DESCR);
DescribeOptionNoDefault(IS_RAND_FIRST_TREE_CHAR,
IS_RAND_FIRST_TREE_DESCR);
exit(EXIT_FAILURE);
}
/* Assert that a user's input value is an integer. If it is not, print
a usage message and an error message and exit the program.
@param param The user's input value
@param optChar The character used to specify the user's input value
*/
void AssertInteger(int param, const char optChar) {
char errorStr[64];
/* Get the user's input value, assume floating point */
const float floatParam = atof(optarg);
/* Make sure positive and integer */
if (floatParam != param) {
sprintf(errorStr, "ERROR: value for -%c must be an integer\n",
optChar);
PrintError(errorStr);
}
}
/* Assert that a user's input value is a positive integer. If it is not, print
a usage message and an error message and exit the program.
@param param The user's input value
@param optChar The character used the specify the user's input value
*/
void AssertPositiveInteger(int param, const char optChar) {
char errorStr[64];
/* Get the user's input value, assume floating point */
const float floatParam = atof(optarg);
/* Make sure positive and integer */
if (param < 1 || floatParam != param) {
sprintf(errorStr, "ERROR: value for -%c must be positive integer\n",
optChar);
PrintError(errorStr);
}
}
/* Assert that a user's input value is bigger than a value. If it is
not, print a usage message and an error message and exit the program.
@param param The user's input value
@param low The value the parameter needs to be bigger than
@param optChar The character used the specify the user's input value
*/
void AssertBigger(int param, const int val, const char optChar) {
char errorStr[64];
if (param <= val) {
sprintf(errorStr,
"ERROR: value for -%c must be bigger than %d\n", optChar, val);
PrintError(errorStr);
}
}
/* Assert that a user's input value is between two values, inclusive. If it is
not, print a usage message and an error message and exit the program.
@param param The user's input value
@param low The lowest value the parameter can be
@param high The highest value the parameter can be
@param optChar The character used the specify the user's input value
*/
void AssertBetweenInclusive(int param, const int low, const int high,
const char optChar) {
char errorStr[64];
if (param < low || param > high) {
sprintf(errorStr,
"ERROR: value for -%c must be between %d and %d, inclusive\n",
optChar, low, high);
PrintError(errorStr);
}
}
/* Exit if a file already exists */
void AssertFileDNE(const char *filename) {
char errorStr[64];
if (access(filename, F_OK) != -1) {
sprintf(errorStr,
"ERROR: File '%s' already exists\n", filename);
PrintError(errorStr);
}
}
/* Allow the user to change simulation parameters via the command line
@param argc The number of command line arguments to parse
@param argv The array of command line arguments to parse
*/
void GetUserOptions(const int argc, char **argv) {
char c; /* Loop control variable */
/* Loop over argv, setting parameter values given */
while ((c = getopt(argc, argv, GETOPT_STRING)) != -1) {
switch(c) {
case N_ROWS_CHAR:
NRows = atoi(optarg);
AssertPositiveInteger(NRows, N_ROWS_CHAR);
break;
case N_COLS_CHAR:
NCols = atoi(optarg);
AssertPositiveInteger(NCols, N_COLS_CHAR);
break;
case BURN_PROB_CHAR:
BurnProb = atoi(optarg);
AssertInteger(BurnProb, BURN_PROB_CHAR);
AssertBetweenInclusive(BurnProb, 0, 100, BURN_PROB_CHAR);
break;
case N_MAX_BURN_STEPS_CHAR:
NMaxBurnSteps = atoi(optarg);
AssertPositiveInteger(NMaxBurnSteps, N_MAX_BURN_STEPS_CHAR);
AssertBigger(NMaxBurnSteps, 1, N_MAX_BURN_STEPS_CHAR);
break;
case N_STEPS_CHAR:
NSteps = atoi(optarg);
AssertPositiveInteger(NSteps, N_STEPS_CHAR);
break;
case RAND_SEED_CHAR:
RandSeed = atoi(optarg);
AssertPositiveInteger(RandSeed, RAND_SEED_CHAR);
break;
case OUTPUT_FILENAME_CHAR:
IsOutputtingEachStep = true;
OutputFilename = optarg;
break;
case IS_RAND_FIRST_TREE_CHAR:
IsRandFirstTree = true;
break;
case '?':
default:
PrintError("ERROR: illegal option\n");
PrintUsageAndExit();
}
}
if (IsOutputtingEachStep) {
/* Make sure the output file does not exist (DNE) */
AssertFileDNE(OutputFilename);
}
}
/* Allocate dynamic memory */
void AllocateMemory() {
Trees = (int*)malloc(NTreesPlusBounds * sizeof(int));
NewTrees = (int*)malloc( NTrees * sizeof(int));
}
/* Generate a random integer between [min..max)
@param min Smallest integer to generate
@param max 1 more than the biggest integer to generate
@return random integer
*/
int RandBetween(const int min, const int max) {
return min + (random() % (max - min));
}
/* Light a random tree on fire, set all other trees to be not burning */
void InitData() {
int row;
int col;
/* Set all trees as having burned for 0 time steps */
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
Trees[ TREE_MAP(row, col, NColsPlusBounds)] =
NewTrees[NEW_TREE_MAP(row, col, NCols)] = 0;
}
}
/* Set the boundaries as burnt out */
for (row = 0; row < NRowsPlusBounds; row++) {
/* Left */
Trees[TREE_MAP(row, 0, NColsPlusBounds)] = NMaxBurnSteps;
/* Top/Bottom */
if ((row == 0) || (row == NRows + 1)) {
for (col = 1; col < NCols + 1; col++) {
Trees[TREE_MAP(row, col, NColsPlusBounds)] = NMaxBurnSteps;
}
}
/* Right */
Trees[TREE_MAP(row, NCols + 1, NColsPlusBounds)] = NMaxBurnSteps;
}
if (IsRandFirstTree) {
/* Light a random tree on fire */
row = RandBetween(1, NRows + 1);
col = RandBetween(1, NCols + 1);
}
else {
/* Light the middle tree on fire */
row = MiddleRow + 1;
col = MiddleCol + 1;
}
Trees[ TREE_MAP(row, col, NColsPlusBounds)] =
NewTrees[NEW_TREE_MAP(row, col, NCols)] = 1;
NBurnedTrees++;
}
/* Output tree data for the current time step */
void OutputData() {
int row;
int col;
char buf[64];
/* Write the header for the current time step */
sprintf(buf, "Time step %d\n", CurStep);
fprintf(OutputFile, "%s", buf);
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
sprintf(buf, "%*d ",
NMaxBurnStepsDigits, Trees[TREE_MAP(row, col, NColsPlusBounds)]);
fprintf(OutputFile, "%s", buf);
}
fprintf(OutputFile, "\n");
}
/* Write the newline between time steps */
fprintf(OutputFile, "\n");
}
/* Return whether a given tree has burnt out
@param row The row index of the tree
@param col The column index of the tree
@return Whether the tree in the given row and column has burnt out
*/
bool IsBurntOut(const int row, const int col) {
return Trees[TREE_MAP(row, col, NColsPlusBounds)] >= NMaxBurnSteps;
}
/* Return whether a given tree is on fire
@param row The row index of the tree
@param col The column index of the tree
@return Whether the tree in the given row and column is on fire
*/
bool IsOnFire(const int row, const int col) {
return Trees[TREE_MAP(row, col, NColsPlusBounds)] > 0 &&
!IsBurntOut(row, col);
}
/* For trees already burning, increment the number of time steps they have
burned
*/
void ContinueBurning() {
int row;
int col;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
if (IsOnFire(row, col)) {
NewTrees[NEW_TREE_MAP(row, col, NCols)] =
Trees[ TREE_MAP(row, col, NColsPlusBounds)] + 1;
}
}
}
}
/* Find trees that are not on fire yet and try to catch them on fire from
burning neighbor trees
*/
void BurnNew() {
int row;
int col;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
if (!IsOnFire(row, col) && !IsBurntOut(row, col)) {
/* Check neighbors */
/* Top */
if ((IsOnFire(row-1, col) ||
/* Left */
IsOnFire(row, col-1) ||
/* Bottom */
IsOnFire(row+1, col) ||
/* Right */
IsOnFire(row, col+1)) &&
/* Apply random chance */
(RandBetween(0, 100) < BurnProb)) {
/* Catch the tree on fire */
NewTrees[NEW_TREE_MAP(row, col, NCols)] = 1;
NBurnedTrees++;
}
}
}
}
}
/* Copy new tree data into old tree data */
void AdvanceTime() {
int row;
int col;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
Trees[ TREE_MAP(row, col, NColsPlusBounds)] =
NewTrees[NEW_TREE_MAP(row, col, NCols)];
}
}
}
/* Free allocated memory */
void FreeMemory() {
free(NewTrees);
free(Trees);
}
/* @param argc The number of command line arguments
@param argv String of command line arguments
*/
int main(int argc, char **argv) {
/* Set the program executable name */
strcpy(ExeName, argv[0]);
/* Allow the user to change simulation parameters via the command line */
GetUserOptions(argc, argv);
if (!AreParamsValid) {
/* Model parameters are not valid; exit early */
PrintUsageAndExit();
}
if (IsOutputtingEachStep) {
/* Open the output file */
OutputFile = fopen(OutputFilename, "w");
}
/* Do some calculations before splitting up the rows */
NTrees = NRows * NCols;
NRowsPlusBounds = NRows + 2;
NColsPlusBounds = NCols + 2;
NTreesPlusBounds = NRowsPlusBounds * NColsPlusBounds;
MiddleRow = NRows / 2;
MiddleCol = NCols / 2;
/* Allocate dynamic memory for the 1D tree arrays */
AllocateMemory();
/* Seed the random number generator */
srandom(RandSeed);
/* Initialize number of burned trees */
NBurnedTrees = 0;
/* Light a random tree on fire, set all other trees to be not burning */
InitData();
/* Start the simulation looping for the specified number of time steps */
for (CurStep = 0; CurStep < NSteps; CurStep++) {
if (IsOutputtingEachStep) {
/* Output tree data for the current time step */
OutputData();
}
/* For trees already burning, increment the number of time steps they have
burned */
ContinueBurning();
/* Find trees that are not on fire yet and try to catch them on fire from
burning neighbor trees */
BurnNew();
/* Copy new tree data into old tree data */
AdvanceTime();
}
/* Print the total percentage of trees burned */
printf("%.2f%% of the trees were burned\n",
(100.0 * NBurnedTrees) / NTrees);
if (IsOutputtingEachStep) {
/* Close the output file */
fclose(OutputFile);
}
/* Free allocated memory */
FreeMemory();
return 0;
}
[C Fragment 2]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/* Model of a forest fire - a 2D rectangular grid of trees is initialized
with one random tree caught on fire. At each time step, trees that are not
on fire yet check their neighbors to the north, east, south, and west, and
if any of them are on fire, the tree catches fire with some percent chance.
The model runs for a certain number of time steps, which can be controlled
by the user. At the end of the simulation, the program outputs the total
percentage of trees burned. Tree data can also be output at each time step
if a filename is provided by the user.
All processes are responsible for running the
simulation and outputting data. The rows of the forest are split up as
evenly as possible among the processes, with the remainder split evenly among
the first few processes. At each time step, processes must each send one row
of data to their top neighbor and one row of data to their bottom neighbor to
communicate at the boundaries between process' rows. Code that should only be
executed by one process are performed by a single "boss" process.
*/
/* Author: Aaron Weeden, Shodor, 2015 */
/* Naming convention:
ALL_CAPS for constants
CamelCase for globals and functions
lowerCase for locals
*/
#include <mpi.h> /* MPI_Init(), MPI_Finalize(), etc. */
#include <stdbool.h> /* bool type */
#include <stdio.h> /* printf() */
#include <stdlib.h> /* atoi(), exit(), EXIT_FAILURE, malloc(), free(),
random() */
#include <string.h> /* strcpy() */
#include <unistd.h> /* getopt() */
/* Declare which MPI process is the boss */
#define BOSS 0
/* Define descriptions of command line options */
#define N_ROWS_DESCR \
"The forest has this many rows of trees (positive integer)"
#define N_COLS_DESCR \
"The forest has this many columns of trees (positive integer)"
#define BURN_PROB_DESCR \
"Chance of catching fire if next to burning tree (positive integer [0..100])"
#define N_MAX_BURN_STEPS_DESCR \
"A burning tree stops burning after this many time steps (positive integer bigger than 1)"
#define N_STEPS_DESCR \
"Run for this many time steps (positive integer)"
#define RAND_SEED_DESCR \
"Seed value for the random number generator (positive integer)"
#define OUTPUT_FILENAME_DESCR \
"Filename to output tree data at each time step (file must not already exist)"
#define IS_RAND_FIRST_TREE_DESCR \
"Start the first on a random first tree as opposed to the middle tree"
/* Define default values for simulation parameters - each of these parameters
can also be changed later via user input */
#define N_ROWS_DEFAULT 21
#define N_COLS_DEFAULT N_ROWS_DEFAULT
#define BURN_PROB_DEFAULT 100
#define N_MAX_BURN_STEPS_DEFAULT 2
#define N_STEPS_DEFAULT N_ROWS_DEFAULT
#define RAND_SEED_DEFAULT 1
#define DEFAULT_IS_OUTPUTTING_EACH_STEP false
#define DEFAULT_IS_RAND_FIRST_TREE false
/* Define characters used on the command line to change the values of input
parameters */
#define N_ROWS_CHAR 'r'
#define N_COLS_CHAR 'c'
#define BURN_PROB_CHAR 'b'
#define N_MAX_BURN_STEPS_CHAR 'm'
#define N_STEPS_CHAR 't'
#define RAND_SEED_CHAR 's'
#define OUTPUT_FILENAME_CHAR 'o'
#define IS_RAND_FIRST_TREE_CHAR 'f'
/* Define options string used by getopt() - a colon after the character means
the parameter's value is specified by the user */
const char GETOPT_STRING[] = {
N_ROWS_CHAR, ':',
N_COLS_CHAR, ':',
BURN_PROB_CHAR, ':',
N_MAX_BURN_STEPS_CHAR, ':',
N_STEPS_CHAR, ':',
RAND_SEED_CHAR, ':',
OUTPUT_FILENAME_CHAR, ':',
IS_RAND_FIRST_TREE_CHAR
};
/* Define a mapping from the row and column of a given tree in a forest with
boundaries to the index of that tree in a 1D array that includes
boundaries */
#define TREE_MAP(row, col, nColsPlusBounds) ((row) * (nColsPlusBounds) + (col))
/* Define a mapping from the row and column of a given tree in a forest with
boundaries to the index of that tree in a 1D array that does not include
boundaries */
#define NEW_TREE_MAP(row, col, nCols) ((row - 1) * (nCols) + (col - 1))
/* Declare global parameters */
int NRows = N_ROWS_DEFAULT;
int NCols = N_COLS_DEFAULT;
int BurnProb = BURN_PROB_DEFAULT;
int NMaxBurnSteps = N_MAX_BURN_STEPS_DEFAULT;
int NSteps = N_STEPS_DEFAULT;
int RandSeed = RAND_SEED_DEFAULT;
bool IsOutputtingEachStep = DEFAULT_IS_OUTPUTTING_EACH_STEP;
bool IsRandFirstTree = DEFAULT_IS_RAND_FIRST_TREE;
char *OutputFilename;
/* Declare other needed global variables */
bool AreParamsValid = true; /* Do the model parameters have valid values? */
int NTrees; /* Total number of trees in the forest */
int NRowsPlusBounds; /* Number of rows of trees plus the boundary rows */
int NColsPlusBounds; /* Number of columns of trees plus the boundary columns */
int NTreesPlusBounds; /* Total number of trees plus the boundaries */
int MiddleRow; /* The tree in the middle is here. If an even number of rows,
this tree is just below the middle */
int MiddleCol; /* The tree in the middle is here. If an even number of cols,
this tree is just to the right of the middle */
int CurStep; /* The current time step */
int NBurnedTrees; /* The total number of burned trees */
char ExeName[32]; /* The name of the program executable */
int NMaxBurnStepsDigits; /* The number of digits in the max burn steps; used for
outputting tree data */
int *Trees; /* 1D tree array, contains a boundary around the outside of the
forest so the same neighbor checking algorithm can be used on
all cells */
int *NewTrees; /* Copy of 1D tree array - used so that we don't update the
forest too soon as we are deciding which new trees
should burn -- does not contain boundary */
MPI_File OutputFile; /* For outputting tree data to a file using MPI */
int BytesPerRow; /* How many bytes of information in each row? Used for
outputting to a file */
int OutputFileOffset = 0; /* Byte in the output file to write to next */
int MyRank; /* MPI rank of the given process executing this code */
int Procs; /* Total number of MPI processes */
int *SendBuf; /* Buffer for sending messages using MPI */
int *RecvBuf; /* Buffer for receiving messages using MPI */
int NRowsBefore; /* How many rows are above the current process'? */
int NRowsAfter; /* How many rows are below the current process'? */
bool IsMiddleRowMine; /* Is the current process responsible for the middle
row? */
/* DECLARE FUNCTIONS */
/* Prints out a description of an integer command line option
@param optChar The character used to specify the option
@param optDescr The description of the option
@param optDefault The default value of the option
*/
void DescribeOptionInt(const char optChar, const char *optDescr,
const int optDefault) {
fprintf(stderr, "-%c : \n\t%s\n\tdefault: %d\n", optChar, optDescr,
optDefault);
}
/* Prints out a description of a string command line option
@param optChar The character used to specify the option
@param optDescr The description of the option
*/
void DescribeOptionNoDefault(const char optChar, const char *optDescr) {
fprintf(stderr, "-%c : \n\t%s\n", optChar, optDescr);
}
/* Print an error message
@param errorMsg Buffer containing the message
*/
void PrintError(const char *errorMsg) {
if (MyRank == BOSS) {
fprintf(stderr, "%s", errorMsg);
}
AreParamsValid = false;
}
/* Display to the user what options are available for running the program and
exit the program in failure
@param errorMsg The error message to print
*/
void PrintUsageAndExit() {
if (MyRank == BOSS) {
fprintf(stderr, "Usage: ");
fprintf(stderr, "%s [OPTIONS]\n", ExeName);
fprintf(stderr, "Where OPTIONS can be any of the following:\n");
DescribeOptionInt(N_ROWS_CHAR, N_ROWS_DESCR, N_ROWS_DEFAULT);
DescribeOptionInt(N_COLS_CHAR, N_COLS_DESCR, N_COLS_DEFAULT);
DescribeOptionInt(BURN_PROB_CHAR, BURN_PROB_DESCR, BURN_PROB_DEFAULT);
DescribeOptionInt(N_MAX_BURN_STEPS_CHAR, N_MAX_BURN_STEPS_DESCR,
N_MAX_BURN_STEPS_DEFAULT);
DescribeOptionInt(N_STEPS_CHAR, N_STEPS_DESCR, N_STEPS_DEFAULT);
DescribeOptionInt(RAND_SEED_CHAR, RAND_SEED_DESCR, RAND_SEED_DEFAULT);
DescribeOptionNoDefault(OUTPUT_FILENAME_CHAR, OUTPUT_FILENAME_DESCR);
DescribeOptionNoDefault(IS_RAND_FIRST_TREE_CHAR,
IS_RAND_FIRST_TREE_DESCR);
}
MPI_Finalize();
exit(EXIT_FAILURE);
}
/* Assert that a user's input value is an integer. If it is not, print
a usage message and an error message and exit the program.
@param param The user's input value
@param optChar The character used to specify the user's input value
*/
void AssertInteger(int param, const char optChar) {
char errorStr[64];
/* Get the user's input value, assume floating point */
const float floatParam = atof(optarg);
/* Make sure positive and integer */
if (floatParam != param) {
sprintf(errorStr, "ERROR: value for -%c must be an integer\n",
optChar);
PrintError(errorStr);
}
}
/* Assert that a user's input value is a positive integer. If it is not, print
a usage message and an error message and exit the program.
@param param The user's input value
@param optChar The character used the specify the user's input value
*/
void AssertPositiveInteger(int param, const char optChar) {
char errorStr[64];
/* Get the user's input value, assume floating point */
const float floatParam = atof(optarg);
/* Make sure positive and integer */
if (param < 1 || floatParam != param) {
sprintf(errorStr, "ERROR: value for -%c must be positive integer\n",
optChar);
PrintError(errorStr);
}
}
/* Assert that a user's input value is bigger than a value. If it is
not, print a usage message and an error message and exit the program.
@param param The user's input value
@param low The value the parameter needs to be bigger than
@param optChar The character used the specify the user's input value
*/
void AssertBigger(int param, const int val, const char optChar) {
char errorStr[64];
if (param <= val) {
sprintf(errorStr,
"ERROR: value for -%c must be bigger than %d\n", optChar, val);
PrintError(errorStr);
}
}
/* Assert that a user's input value is between two values, inclusive. If it is
not, print a usage message and an error message and exit the program.
@param param The user's input value
@param low The lowest value the parameter can be
@param high The highest value the parameter can be
@param optChar The character used the specify the user's input value
*/
void AssertBetweenInclusive(int param, const int low, const int high,
const char optChar) {
char errorStr[64];
if (param < low || param > high) {
sprintf(errorStr,
"ERROR: value for -%c must be between %d and %d, inclusive\n",
optChar, low, high);
PrintError(errorStr);
}
}
/* Exit if a file already exists */
void AssertFileDNE(const char *filename) {
char errorStr[64];
if (access(filename, F_OK) != -1) {
sprintf(errorStr,
"ERROR: File '%s' already exists\n", filename);
PrintError(errorStr);
}
}
/* Allow the user to change simulation parameters via the command line
@param argc The number of command line arguments to parse
@param argv The array of command line arguments to parse
*/
void GetUserOptions(const int argc, char **argv) {
char c; /* Loop control variable */
/* Loop over argv, setting parameter values given */
while ((c = getopt(argc, argv, GETOPT_STRING)) != -1) {
switch(c) {
case N_ROWS_CHAR:
NRows = atoi(optarg);
AssertPositiveInteger(NRows, N_ROWS_CHAR);
break;
case N_COLS_CHAR:
NCols = atoi(optarg);
AssertPositiveInteger(NCols, N_COLS_CHAR);
break;
case BURN_PROB_CHAR:
BurnProb = atoi(optarg);
AssertInteger(BurnProb, BURN_PROB_CHAR);
AssertBetweenInclusive(BurnProb, 0, 100, BURN_PROB_CHAR);
break;
case N_MAX_BURN_STEPS_CHAR:
NMaxBurnSteps = atoi(optarg);
AssertPositiveInteger(NMaxBurnSteps, N_MAX_BURN_STEPS_CHAR);
AssertBigger(NMaxBurnSteps, 1, N_MAX_BURN_STEPS_CHAR);
break;
case N_STEPS_CHAR:
NSteps = atoi(optarg);
AssertPositiveInteger(NSteps, N_STEPS_CHAR);
break;
case RAND_SEED_CHAR:
RandSeed = atoi(optarg);
AssertPositiveInteger(RandSeed, RAND_SEED_CHAR);
break;
case OUTPUT_FILENAME_CHAR:
IsOutputtingEachStep = true;
OutputFilename = optarg;
break;
case IS_RAND_FIRST_TREE_CHAR:
IsRandFirstTree = true;
break;
case '?':
default:
PrintError("ERROR: illegal option\n");
PrintUsageAndExit();
}
}
if (IsOutputtingEachStep) {
/* Make sure the output file does not exist (DNE) */
if (MyRank == BOSS) { /* There would be a race condition if one process
checks if the file exists, sees that it does not
exist (DNE), and creates the file, then another
process checks if the file exists and sees that it
does exist, even though it DNE initially */
AssertFileDNE(OutputFilename);
}
}
if (Procs > NRows) {
PrintError("ERROR: The number of processes cannot be greater than the number of rows\n");
}
}
/* Calculate the number of rows for which each process is responsible */
void DistributeRows() {
const int evenSplit = NRows / Procs; /* If the number of rows is divided
evenly with no remainder, this is
the result */
const int remainder = NRows % Procs; /* The remainder of that division is
this result */
/* All processes have at least an even split of the forest */
NRows = evenSplit;
/* The remainder is split up evenly among the first few processes; each
process gets one extra row */
if (MyRank < remainder) {
NRows++;
NRowsBefore =
(evenSplit + 1) * (MyRank); /* The processes that have one more than an
even split of rows are between
[0..MyRank]. */
NRowsAfter =
(evenSplit + 1) * (remainder - MyRank - 1) + /* The processes that have
one more than an
even split of rows are
between
(MyRank..remainder]. */
(evenSplit ) * (Procs - remainder); /* The processes that have an
even split of rows are
between [remainder..Procs) */
}
else {
NRowsBefore =
(evenSplit + 1) * (remainder) + /* The processes that have one more than
an even split of rows are between
[0..remainder]. */
(evenSplit ) * (MyRank - remainder); /* The processes that have an
even split of rows are
between
[remainder..MyRank] */
NRowsAfter =
(evenSplit ) * (Procs - MyRank - 1); /* The processes that have an
even split of rows are
between [MyRank..Procs) */
}
/* Determine whether the current process is responsible for the middle row */
IsMiddleRowMine = (!IsRandFirstTree && MiddleRow >= NRowsBefore &&
MiddleRow < NRowsBefore + NRows);
/* If the current process is responsible for the middle row, indicate which
row that is relative to the process' first row */
if (IsMiddleRowMine) {
MiddleRow -= NRowsBefore;
}
}
/* Allocate dynamic memory */
void AllocateMemory() {
Trees = (int*)malloc(NTreesPlusBounds * sizeof(int));
NewTrees = (int*)malloc( NTrees * sizeof(int));
/* The send and receive buffers are single rows with boundary columns */
SendBuf = (int*)malloc(NColsPlusBounds * sizeof(int));
RecvBuf = (int*)malloc(NColsPlusBounds * sizeof(int));
}
/* Generate a random integer between [min..max)
@param min Smallest integer to generate
@param max 1 more than the biggest integer to generate
@return random integer
*/
int RandBetween(const int min, const int max) {
return min + (random() % (max - min));
}
/* Light a random tree on fire, set all other trees to be not burning */
void InitData() {
int row;
int col;
int rank;
bool amIChosen;
/* Set all trees as having burned for 0 time steps */
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
Trees[ TREE_MAP(row, col, NColsPlusBounds)] =
NewTrees[NEW_TREE_MAP(row, col, NCols)] = 0;
}
}
/* Set the boundaries as burnt out */
for (row = 0; row < NRowsPlusBounds; row++) {
/* Left */
Trees[TREE_MAP(row, 0, NColsPlusBounds)] = NMaxBurnSteps;
/* Top/Bottom */
if ((MyRank == 0 && row == 0) ||
(MyRank == Procs - 1 && row == NRows + 1)) {
for (col = 1; col < NCols + 1; col++) {
Trees[TREE_MAP(row, col, NColsPlusBounds)] = NMaxBurnSteps;
}
}
/* Right */
Trees[TREE_MAP(row, NCols + 1, NColsPlusBounds)] = NMaxBurnSteps;
}
if (IsRandFirstTree) {
/* The boss chooses a random process to light a random tree on fire */
if (MyRank == BOSS) {
rank = RandBetween(0, Procs);
}
/* The boss broadcasts the rank of the chosen process */
MPI_Bcast(&rank, 1, MPI_INT, BOSS, MPI_COMM_WORLD);
/* The chosen process sets a random tree as having burned for 1 time step */
amIChosen = (rank == MyRank);
}
else {
amIChosen = IsMiddleRowMine;
}
if (amIChosen) {
if (IsRandFirstTree) {
/* Light a random tree on fire */
row = RandBetween(1, NRows + 1);
col = RandBetween(1, NCols + 1);
}
else {
/* Light the middle tree on fire */
row = MiddleRow + 1;
col = MiddleCol + 1;
}
Trees[ TREE_MAP(row, col, NColsPlusBounds)] =
NewTrees[NEW_TREE_MAP(row, col, NCols)] = 1;
NBurnedTrees++;
}
}
/* Write a buffer of a certain length to the output file
@param buf The buffer
@param whoWrites The rank of the process who writes to the file
*/
void WriteToFile(char *buf, const int whoWrites) {
const int len = strlen(buf);
if (MyRank == whoWrites) {
MPI_File_write_at(OutputFile, OutputFileOffset, buf, len, MPI_CHAR,
MPI_STATUS_IGNORE);
}
OutputFileOffset += len * sizeof(char);
}
/* Output tree data for the current time step */
void OutputData() {
int row;
int col;
char buf[64];
/* Write the header for the current time step */
sprintf(buf, "Time step %d\n", CurStep);
WriteToFile(buf, BOSS);
/* Adjust the offset to take into account the tree data for all processes
whose ranks are less than the current process' */
OutputFileOffset += NRowsBefore * BytesPerRow;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
sprintf(buf, "%*d ",
NMaxBurnStepsDigits, Trees[TREE_MAP(row, col, NColsPlusBounds)]);
WriteToFile(buf, MyRank);
}
WriteToFile("\n", MyRank);
}
/* Adjust the offset to account for the tree data for processes who have a
rank bigger than the current process */
OutputFileOffset += NRowsAfter * BytesPerRow;
/* Write the newline between time steps */
WriteToFile("\n", BOSS);
}
/* Return whether a given tree has burnt out
@param row The row index of the tree
@param col The column index of the tree
@return Whether the tree in the given row and column has burnt out
*/
bool IsBurntOut(const int row, const int col) {
return Trees[TREE_MAP(row, col, NColsPlusBounds)] >= NMaxBurnSteps;
}
/* Return whether a given tree is on fire
@param row The row index of the tree
@param col The column index of the tree
@return Whether the tree in the given row and column is on fire
*/
bool IsOnFire(const int row, const int col) {
return Trees[TREE_MAP(row, col, NColsPlusBounds)] > 0 &&
!IsBurntOut(row, col);
}
/* For trees already burning, increment the number of time steps they have
burned
*/
void ContinueBurning() {
int row;
int col;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
if (IsOnFire(row, col)) {
NewTrees[NEW_TREE_MAP(row, col, NCols)] =
Trees[ TREE_MAP(row, col, NColsPlusBounds)] + 1;
}
}
}
}
/* Send a row to a process then receive a row from the same process,
using the current time step as the tag of the messages
@param rank The rank of the process to send/receive to/from
@param rank The index of the row to send
@param rank The index of the row to receive
*/
void SendRecv(const int rank, const int sendRow, const int recvRow) {
int col;
/* Before sending, fill the send buffer with the row to send */
for (col = 0; col < NColsPlusBounds; col++) {
SendBuf[col] = Trees[TREE_MAP(sendRow, col, NColsPlusBounds)];
}
MPI_Sendrecv(SendBuf, /* send buffer */
NColsPlusBounds, /* number of elements to send */
MPI_INT, /* type of element to send */
rank, /* rank of process to send to */
CurStep, /* send message tag */
RecvBuf, /* receive buffer */
NColsPlusBounds, /* number of elements to receive */
MPI_INT, /* type of element to receive */
rank, /* rank of process to receive from */
CurStep, /* receive messsage tag */
MPI_COMM_WORLD, /* communicator */
MPI_STATUS_IGNORE); /* status */
/* After receiving, fill the row to receive with the receive buffer */
for (col = 0; col < NColsPlusBounds; col++) {
Trees[TREE_MAP(recvRow, col, NColsPlusBounds)] = RecvBuf[col];
}
}
/* Send/receive boundary rows to/from neighbor processes */
void CommunicateBoundaries() {
/* Communicate with the top neighbor */
if (MyRank > 0) { /* The top process has no top neighbor */
SendRecv(MyRank - 1, /* process to communicate with */
1, /* index of row to send */
0); /* index row to receive */
}
/* Communicate with the bottom neighbor */
if (MyRank < Procs - 1) { /* The bottom process has no bottom neighbor */
SendRecv(MyRank + 1, /* process to communicate with */
NRows, /* index of row to send */
NRows + 1); /* index of row to receive */
}
}
/* Find trees that are not on fire yet and try to catch them on fire from
burning neighbor trees
*/
void BurnNew() {
int row;
int col;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
if (!IsOnFire(row, col) && !IsBurntOut(row, col)) {
/* Check neighbors */
/* Top */
if ((IsOnFire(row-1, col) ||
/* Left */
IsOnFire(row, col-1) ||
/* Bottom */
IsOnFire(row+1, col) ||
/* Right */
IsOnFire(row, col+1)) &&
/* Apply random chance */
(RandBetween(0, 100) < BurnProb)) {
/* Catch the tree on fire */
NewTrees[NEW_TREE_MAP(row, col, NCols)] = 1;
NBurnedTrees++;
}
}
}
}
}
/* Copy new tree data into old tree data */
void AdvanceTime() {
int row;
int col;
for (row = 1; row < NRows + 1; row++) {
for (col = 1; col < NCols + 1; col++) {
Trees[ TREE_MAP(row, col, NColsPlusBounds)] =
NewTrees[NEW_TREE_MAP(row, col, NCols)];
}
}
}
/* Free allocated memory */
void FreeMemory() {
free(RecvBuf);
free(SendBuf);
free(NewTrees);
free(Trees);
}
/* @param argc The number of command line arguments
@param argv String of command line arguments
*/
int main(int argc, char **argv) {
int i;
/* Initialize MPI */
MPI_Init(&argc, &argv);
/* Get the MPI rank of the process executing this code */
MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);
/* Get the total number of MPI processes */
MPI_Comm_size(MPI_COMM_WORLD, &Procs);
/* The boss process sets the program executable name */
if (MyRank == BOSS) {
/* Set the program executable name */
strcpy(ExeName, argv[0]);
}
/* Allow the user to change simulation parameters via the command line */
GetUserOptions(argc, argv);
/* Since the boss might have done some validity checks that the non-bosses
didn't, the boss has the final say on whether parameters were valid, so
the boss broadcasts this information to the others */
MPI_Bcast(&AreParamsValid, /* Send/recv buffer */
1, /* Number of elements */
MPI_INT, /* Type of elements */
BOSS, /* Sender */
MPI_COMM_WORLD); /* Communicator */
if (!AreParamsValid) {
/* Model parameters are not valid; exit early */
PrintUsageAndExit();
}
if (IsOutputtingEachStep) {
/* Open the output file */
MPI_File_open(MPI_COMM_WORLD, OutputFilename,
MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &OutputFile);
/* Determine the number of digits in the max burn steps */
NMaxBurnStepsDigits = 1;
for (i = 10; NMaxBurnSteps >= i; i *= 10) {
NMaxBurnStepsDigits++;
}
/* Calculate the bytes per row -- each column has one character for each
digit in the max burn steps and one for the space between columns; there
is also one character at the end of the row for the newline */
BytesPerRow = NCols * (NMaxBurnStepsDigits + 1) + 1 * sizeof(char);
}
/* Do some calculations before splitting up the rows */
NTrees = NRows * NCols;
NRowsPlusBounds = NRows + 2;
NColsPlusBounds = NCols + 2;
NTreesPlusBounds = NRowsPlusBounds * NColsPlusBounds;
MiddleRow = NRows / 2;
MiddleCol = NCols / 2;
/* Calculate the number of rows for which each process is responsible */
DistributeRows();
/* Allocate dynamic memory for the 1D tree arrays */
AllocateMemory();
/* Seed the random number generator */
srandom(RandSeed);
/* Initialize number of burned trees */
NBurnedTrees = 0;
/* Light a random tree on fire, set all other trees to be not burning */
InitData();
/* Start the simulation looping for the specified number of time steps */
for (CurStep = 0; CurStep < NSteps; CurStep++) {
if (IsOutputtingEachStep) {
/* Output tree data for the current time step */
OutputData();
}
/* For trees already burning, increment the number of time steps they have
burned */
ContinueBurning();
/* Send/receive boundary rows to/from neighbor processes */
CommunicateBoundaries();
/* Find trees that are not on fire yet and try to catch them on fire from
burning neighbor trees */
BurnNew();
/* Copy new tree data into old tree data */
AdvanceTime();
}
/* Print the total percentage of trees burned */
MPI_Reduce(&NBurnedTrees, /* Send buffer */
&i, /* Receive buffer */
1, /* Number of elements */
MPI_INT, /* Type of elements */
MPI_SUM, /* Type of operation */
BOSS, /* Receiver */
MPI_COMM_WORLD); /* Communicator */
if (MyRank == BOSS) { /* The boss propares to print the percentage of trees
burned */
NBurnedTrees = i;
printf("%.2f%% of the trees were burned\n",
(100.0 * NBurnedTrees) / NTrees);
}
if (IsOutputtingEachStep) {
/* Close the output file */
MPI_File_close(&OutputFile);
}
/* Free allocated memory */
FreeMemory();
/* Clean up MPI */
MPI_Finalize();
return 0;
}
33 differences: 248 lines, 48 inline differences in 30 changed lines
Added(218,28)
Deleted(0,9)
Changed(30)
Changed in changed(11)
Ignored
Generated on October 13, 2015, 11:32 AM by ExamDiff Pro 8.0.0.3.