
PRESENTED BY:

Programming with
Python

Antonio Gomez Iglesias

Texas Advanced Computing Center

HPC Group

agomez@tacc.utexas.edu

Southern University and A&M College

April 1st

http://hpcuniversity.org/trainingMaterials/237/

XSEDE
•  Single virtual system that researchers can use to interactively share

computing resources, data and expertise.

•  People around the world use these resources and services - things
like supercomputers, collections of data and new tools - to improve
our planet.

•  Access to resources that include HPC machines, High Throughput
Computing (HTC) machines, visualization, data storage, test-beds, &
services

•  Science Gateways enable entire communities of users associated
with a common discipline to use national resources through a
common interface that is configured for optimal use.

•  Extended Collaborative Support Service (ECSS) through which
researchers can request to be paired with expert staff members for
an extended period (weeks up to a year).

https://www.xsede.org
2

XSEDE Resources

https://portal.xsede.org/user-guides

3

Maverick

4

Ready?

•  Did you sign in?
•  Do you have a username/password?

•  Can you connect to the Internet?

5

http://hpcuniversity.org/trainingMaterials/237/

Getting Started
•  Go to TACC vis. portal: https://vis.tacc.utexas.edu/

•  Select “TACC User Portal User”

•  Use your username/password

•  Go to the Jobs tab

•  On “Session type”, click on iPython/Jupyter Notebook

•  Click on Set iPython Password and choose something you
like

•  Click on iPython/Jupyter Notebook (again)

•  Click on Start Job

•  Click on Open in Browser

•  Create a new Python 2 Notebook (“New” button)

6

Part I

•  My first program
•  Data types

•  Variables

•  Arithmetic operations

•  Relational operations

7

My first program

"""

This is my first program

"""

print “Hello from my first program”

8

•  In your Jupyter Notebook, write this program:

•  Shift+Enter will run this code

•  You can also click on the “Run” button

Our first program

"""

This is my first program

"""

print “Hello from my first program”

The text between “”” is a comment è it
helps you to know what the code does,
but it’s not executed. You can also use
#, and all of text to the right of the #
symbol will be a comment

This is a Python instruction
(print). This is the code that will
be executed

9

What happens when you run
your program?

•  There is a Python interpreter

•  The interpreter understand Python code

•  Converts this code to something that the computer
understands

•  Any “computer” with a Python interpreter installed
will be able to run your program!

•  Jupyter calls this interpreter for you
•  If you are not using Jupyter, from a Console, simply run:

 “$ python your_program.py”

10

Let’s print a number

print “This is my first program!”

print 5

print 1+1

11

Using variables

•  You will need to store data into variables

•  You can use those variables later on

•  You can perform operations with those variables

•  Variables are declared with a name, followed by ‘=‘
and a value
•  An integer, string,…

•  When declaring a variable, capitalization is
important:
•  ‘A’ <> ‘a’

12

Using variables

five = 5

one = 1

print five

print one + one

message = “This is a string”

print message

13

Scope of variables

•  Not all variables are accessible from all parts of
the program (we’ll see it with functions)

•  Variables in the main body (what you have so
far) are global: accessible everywhere in the
code

•  Variables in one indented block are accessible in
that block and dependent blocks (blocks inside
the block): we are going to see this (indentation)

14

Data types

integer_variable = 100

floating_point_variable = 100.0

string_variable = “Name”

15

Checking/changing types
•  Variables have a type

•  Check the type of a variable using the type() function:
print type(integer_variable)

•  It is also possible to change the type of some basic types:
•  str(int/float): converts an integer/float to a

string

•  int(str): converts a string to an integer

•  float(str): converts a string to a float

•  Be careful: you can only convert data that actually
makes sense to be transformed

16

Arithmetic operations

Symbol Task Performed Example

+ Addition 1 + 1 = 2

- Subtraction 5 – 3 = 2

/ Division 4 / 2 = 2

% Modulo 5 % 2 = 1

* Multiplication 5 * 2 = 10

// Floor division 5 // 2 = 2

** To the power of 2 ** 3 = 8

17

Arithmetic operations

•  What happens when you try 5 / 2 ?

•  And 5.0 / 2 ?

•  Can you do string + string?

•  And string + number?

•  String * number?

•  What’s the result of 3+5*2 ?

18

Order of operators
1.  () [] {}

2.  **

3.  *, /, % , //

4.  +, -

5.  <, >, <=, >=

6.  ==, !=

So, if 3+5*2 = 13. How can you get 16 with the
same sequence of numbers? (You can add
more operators)

19

•  3+5*2 = 13
•  5*2 = 10

•  3+10 = 13

•  (3+5)*2 = 16
•  3+5 = 8

•  8*2 = 16

Order of operators

20

Relational operations

Symbol Task Performed Example

== True if equal 1 == 1

!= True if not equal 1 != 2

< Less than 1 < 2

> Greater than 2 > 1

<= Less than or equal to 2 <= 2

>= Greater than or equal to 3 >= 2

21

Part 2

•  Input and output

•  Control flow:
•  Loops

•  Conditions

•  More data types

•  Functions

22

Reading something from the
keyboard

var = input(“Write a number: ”)

print “The number that you wrote was : ”, var

Try to read a string

23

Writing on the screen
•  We have already seen print

•  print has some tricks to put together strings and
numbers:

 print “The number that you wrote was : ”, var

 print “The number that you wrote was : %d” % var

Symbol Meaning

%d integer

%f floating point

%s string

24

Reading and writing files

•  Files are permanently stored on disk

•  You can create data, store it on a file, and reuse
it later on

•  When working with files you have to:
1.  Open a file

2.  Read/write

3.  Close the file

25

Writing to a file
my_file = open(“output_file.txt”,’w’)
vars = “This is a string”
my_file.write(vars)
var1 = 10
my_file.write(str(var1))
var2 = 20.0
my_file.write(str(var2))
my_file.close()

What’s happening with the output?

26

Some special characters
Symbol Meaning

\n New line

\t Insert tab

•  Fix the previous program to write each variable in one line.

my_file = open(“output_file.txt”,’w’)
vars = “This is a string”
my_file.write(vars)

my_file.write(“\n”)
var1 = 10
my_file.write(str(var1))
my_file.write(“\n”)
var2 = 20.0
my_file.write(str(var2))

my_file.write(“\n”)
my_file.close()

27

Appending to a file / Rewriting
a file / Open as read only

•  When opening a file, you need to decide “how”
you want to open it:

•  Just read?

• Are you going to write to the file?

•  If the file already exists, what do you want to do with it?

Character Meaning

r Read only file (default)

w Write mode: file will be erased if it exists

a Write mode: new content will be appended to the end of
the file

28

Read the file you created
before

my_file = open(“output_file.txt”,’r’)

content = my_file.read()

print content

my_file.close()

29

Read the file you created before
(line by line)

my_file = open(“output_file.txt”,’r’)
vars = my_file.readline()
var1 = my_file.readline()

var2 = my_file.readline()
print “String: ”, vars
print “Integer: ”, var1

print “Float: ”, var2
my_file.close()

30

Control flow

•  So far we have been writing instruction after
instruction

•  Every instruction is executed in order

•  What happens if we want to have instructions
that are only executed if a given condition is
true?

31

if/else/elif

•  The if/else construction allows you to define
conditions in your program

•  The syntax is as follows:

 if conditionA: #Remember to put the colon

 statementA #Remember indentation

 elif conditionB: #Colon here too

 statementB

 else: #And another colon

 statementD

 this line will be always executed (after the if/else)

32

if/else

•  There can be many instructions in each part of the
if/else

•  Remember the scope of the variables: if a variable
is defined inside of if/else, it won’t be available
outside the if/else

•  Remember to keep the 4 spaces: that’s the
delimiter of a block. All the lines with the same
indentation belong to the same block

33

Exercise

•  Read a number from the keyboard

•  If the number is greater or equal than 10, show “This
number is greater or equal than 10”

•  Else, show the message “This number is smaller than
10”

5 minutes for this exercise

34

Solution

number = input(“Write a number: ”)
if number >= 10:
 print “This number is greater or equal than 10”

else:
 print “This number is smaller than 10”
print “Bye!”

35

Nested if

•  You can nest different blocks:

if condition1:

 statement1
 if condition2:
 statement2
 else:

 if condition3:
 statement3 # when is this statement executed?
else: # which ‘if’ does this ‘else’ belong to?

 statement4 # when is this statement executed?

36

For loops

•  For loops allow you to iterate over a sequence

 my_file = open(“output_file.txt”,’r’)
 vars = my_file.readline()
 var1 = my_file.readline()
 var2 = my_file.readline()
 for i in vars, var1, var2:

 print i
 my_file.close()

37

range()

•  This function creates a list containing arithmetic
progression

 range(5)

 [0, 1, 2, 3, 4]

•  This is very useful in loops

 for i in range(5):

 print i

38

Exercise

•  Part 1:
•  Read a number from the keyboard

•  Show the list of all positive integers from 0 to that
number

•  Part 2:
•  Only show even numbers

5 minutes for this exercise

39

While loops

•  Another iterative construct

•  Gives you a different type of control

 while (condition is True):
 do something

•  Example: simulate a for loop with a while loop

idx = 0 # Initialization

while (idx < 10): # Condition

 do_something

 idx = idx + 1 # Why do we need this?

40

Exercise

•  Use a while loop to read a number from the
keyboard

•  Stop when the number read is one you
previously decided (i.e. 10)

3 minutes for this exercise (3!!!)

41

Solution

var = 0

while (var != 10):

 var = input(“Write a number: ”)

42

Nesting
for …:

 if contidition1:

 if_statement1

 if_statement2

 else:

 else_statement1

 while condition:

 statement1

 statement2

 if condition3:

 if_statement1

 for_statement1

statement

43

lists
•  A list is a sequence, where each element is assigned a

position (index)

•  You can access each position using []. First position is 0

•  Elements in the list can be of different type

 mylist1 = [“first item”, “second item”]

 mylist2 = [1, 2, 3, 4]

 mylist3 = [“first”, “second”, 3]

 print mylist1[0], mylist1[1]

 print mylist2[0]

 print mylist3

 print mylist3[0], mylist3[1], mylist3[2]

 print mylist2[0] + mylist3[2]

44

lists

•  It’s possible to use slicing:

 print mylist3[0:3]

 print mylist3

•  To change the value of an element in a list, simply assign it
a new value:

 mylist3[0] = 10

 print mylist3

45

lists
•  There’s a function that returns the number of elements in a list

 len(mylist2)

•  Check if a value exists in a list:

 1 in mylist2

•  Delete an element

 len(mylist2)

 del mylist2[0]

 print mylist2

•  Iterate over the elements of a list:

 for x in mylist2:

 print x

 46

Exercise

•  Create a list of 10 elements

•  Find the maximum number in the list

5 minutes for this exercise

47

Exercise

mylist = [1, 99, 51, 43, 112, 7, 64, 11, 16, 81]

mymax = 0

for i in mylist:
if (mymax < i):

mymax = i

print mymax

48

lists

•  There are more functions

 max(mylist), min(mylist)

•  It’s possible to add new elements to a list:

 my_list.append(new_item)

•  We know how to find if an element exists, but there’s a
way to return the position of that element:

 my_list.index(item)

•  Or how many times a given item appears in the list:

 my_list.count(item)

49

break/continue

•  break: terminates a loop

•  continue: skip the remainder of the loop and
return to the beginning of the loop

50

for x in my_list:
 if x == something:

 continue
statement

	

for x in my_list:
 if x == something:

 break
statement
	

Functions
•  The code can (will) get too complicated

•  Group the same functionality in a function:

•  Reusable code

•  Provides modularity to your code

•  Easier to develop, make changes, …

•  Ideally a function does one thing

•  You can use any of the control flow options that we
already know

•  Functions are executed when they are called from the
code currently in execution

•  They need to be declared before they are called

51

Functions

•  To declare a function:

def name_of_the_function ([arguments]):

•  The code inside the function is indented

•  Functions normally end with a return statement:

 return [expression]

•  The variables that are declared within the function,
are not accessible from outside the function
(scope)

52

Functions

def function_name(): #The function is only executed when called

 statement1

 statement2

 control_flow_statement:

 stament

 return

statement_before_the_function

function_name() # we call the function here

statement_after_the_function

53

Declaring our first function

def my_first_function():
 print “Hello from the function”
 return

print “This is before the function”
my_first_function()
print “This is after the function”

54

Passing values to functions

•  Define a list of arguments separated by commas
 def name_of_the_function (arg1, arg2, arg3):

 print arg1, arg2, arg3

•  When calling the function, your variables don’t
need to be called arg1, arg2, arg3:

 name_of_the_function(var1, varY, VaRZ)

55

Passing a string and an
integer

def function_with_args(my_str, my_int):

 print “This is the string: ”, my_str

 print “This is the integer: ”, my_int

 return

var_str = “Hi”

var_int = 5

function_with_args(var_str, var_int)

56

Returning a value from a
function

•  Use the return statement to return a variable or
set of variables to the caller

•  Assign the function to a variable or set of
variables on the caller

 def my_function():
 …

 return a,b,c

 mya, myb, myc = my_function()

57

Exercise

•  Read a number from the keyboard

•  Pass the number to a function

•  In the function:
•  If the number is greater than 10, show “This number is

greater than 10”

•  Else, show the message “This number is smaller than 10”

58

Special functions

•  What code is executed when the program starts?
•  The interpreter will execute all the code that it finds in the

file

•  It is sometimes useful (modules) to define a “main”
function, the entry point to your program, and put
all the statements inside main

•  Everything inside main, is local to main (remember
the scope of variables)

 if _ _name_ _ == “_ _main_ _”:

 first_statement_of_your_program

59

Remember the scope
my_str = “hi”

def example():

 a = 2

 print my_str #can I do this? why?

 print “This is the function: ”, a #which a is this one?

 return

if _ _name_ _ == “_ _main_ _”:
a = 1
example()
print “This is main: ”, a #what is this going to print? 1? 2?

60

Part 3

•  Modules

•  Using your own modules

61

Modules

•  So far we have seen some functions:
•  len(), range(), max(), min(),…

•  Python includes many external libraries or
modules that provide additional functionality
•  Mathematical functions

•  System interaction

•  Plotting

•  You can also define your own modules
•  Helpful to group a lot of functionality together and

reuse it

62

import
•  To use a module, first you have to tell Python that you

want to use it
 import math

 import string

•  You now have access to the functionality provided by
math by using “math.” plus the name of the function
that you want

 math.floor(math.pi)

 math.sqrt(9)

 math.pow(3,2)

•  https://docs.python.org/2/library/math.html
•  https://docs.python.org/2/library/string.html

63

from X import Y
•  When you import a module, you still need to put the name of

the module + “.” + function name

•  If you know that you only need the “floor” function from
math, you can simply import like:

 from math import floor

•  Now you can call floor(3.14), but you can’t call
floor(math.pi)

•  You can also import everything from a module (this might be
dangerous)

 from math import *

64

Creating your own module

•  Create a .py file (my_module.py):
•  New -> Tex file (File - Rename)

•  Define the functions that you need:
 def function1(…):

 def function2(…):

•  From your notebook, import the module:

 import my_module

•  You should now be able to call:

 my_module.function1(…)

65

Part 4

•  Plotting

66

matplotlib

•  matplotlib is the most popular plotting library in
Python

 import matplotlib.pyplot as plt

•  You need to tell matplotlib what is that you want
to plot (the data):

 plt.plot(x, y, [style])

•  plot takes at least one parameter

•  plot can be used to plot several different series

67

matplotlib

•  You normally plot lists:
 #We need the next line for Jupyter

 %matplotlib inline

 import matplotlib.pyplot as plt

 myx = [1,2,3,4]

 myy = [1,2,3,4]

 plt.plot(myx, myy)

•  But, sometimes, this doesn’t show anything!!

 plt.show() è this function displays an image

68

Adding more things

•  We already know who to create basic plots

•  When presenting data, you need to give more
information: axis, units, legend

•  Adding labels to the axis:
plt.xlabel(“put xlabel here”)

plt.ylabel(“put ylabel here”)

•  Adding a title:
plt.title(“title of the plot”)

69

Changing the plot style
 plt.plot(myx, myy, [format])
•  Combine colors and markers to create different

styles

Symbol Marker/style

‘o’ Use circles

‘^’ ‘v’ ‘<‘ ‘>’ Use triangles

‘s’ Use squares

‘*’ Use stars

‘-’ Single dashes

‘--’ Double dashed line

Symbol Color

‘r’ red

‘b’ blue

‘g’ green

‘c’ cyan

‘m’ magenta

‘y’ yellow

‘k’ black

‘w’ white

70

Plotting more than one
series

•  Many times you need to compare two different
series in a single plot

•  You can use more than one plot and then show
them all together:

 plt.plot(x1, y1, “bo”)

 plot.plot(x2, y2, “r”)

 plt.show()

71

Setting limits, adding ticks

•  It is possible to set limits to both x and y-axis

•  Useful in cases where matplotlib might not be
doing the best job

 plt.xlim(xmin, xmax)

 plt.ylim(ymin, ymax)

•  It is sometimes also useful to add more detail
between ticks, so that it’s easier to visualize the
data

 minorticks_on()

72

Limits and ticks
import matplotlib.pyplot as plt

plt.plot([1,2,3,4])

plt.ylabel(“some numbers”)

plt.title(“my plot”)

plt.xlim(0,2)

plt.ylim(0,3)

plt.minorticks_on()

plt.show()

73

More advanced plotting
•  It is sometimes better to explicitly create the figure

and the axis as independent elements

 myx1 = range(5)

 myx2 = range(10)

 fig, ax = plt.subplots()

 ax.plot(myx1, "bo", label="label1")

 ax.plot(myx2, "r", label="label2")

 ax.set_xlim(1,5)

 ax.set_ylim(1,5)

 ax.set_xlabel("x label")

 ax.set_ylabel("y label")

 ax.minorticks_on()

 ax.legend(loc='upper left', shadow=True)

 plt.show()

74

More plotting
•  Feel free to explore more:

•  http://matplotlib.org/gallery.html

•  Very often you will see code with something like:

 import numpy as np

•  NumPy is a numerical library, designed to
provide data structures that are very fast (arrays)
•  https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

•  There are other plotting libraries
•  http://seaborn.pydata.org/index.html

•  http://ggplot.yhathq.com/

•  http://bokeh.pydata.org

•  https://plot.ly/python/

75

Finally

•  Your feedback is important
•  What went well, what didn’t

•  What else can we do?

•  Please take a few minutes to complete

the survey!

http://bit.ly/xsedesouthern

76

PRESENTED BY:

Programming with
Python

Antonio Gomez Iglesias

Texas Advanced Computing Center

HPC Group

agomez@tacc.utexas.edu

Southern University and A&M College

April 1st

http://hpcuniversity.org/trainingMaterials/237/

