

Offload Exercises: Option B

(based on code examples used in presentation)

Contents of README in offload_demos.tar:

 offload_demos.tar -- Introduction to Xeon Phi Explicit Offload

 **

djames (at) tacc.utexas.edu

Initial release: 01 Oct 2013

Revision History

 04 Oct 2013 Removed references to alloc_if and free_if in

 off06stack. These two keywords apparently have

 no effect on stack-based arrays.

 --

 Preparation

 -- Log into Stampede

 -- From an appropriate directory (e.g. $WORK), copy and extract

 the files by executing:

 tar xvf ~train00/offload_demos.tar

 -- Enter the directory containing the files:

 cd offload_demos

 -- Start a 1-node srun or idev session; e.g.

 srun --pty -t 01:00:00 -n 16 -p development /bin/bash -l

 ...or...

 idev

 Explicit Offload

 Run experiments and exercises as desired from the off* source code

 files used in the tutorial. The list below includes suggestions

 and possibilities.

 All C files should compile with "icc -openmp off0Xxxxxx.c",

 where off0Xxxxxx.c represents the name of the file.

 The resulting executable will have the name a.out.

 All Fortran files should compile with "ifort -openmp off0Xxxxxx.f90",

 where off0Xxxxxx.f90 represents the name of the file.

 The resulting executable will have the name a.out.

2

 Suggested experiments/exercises:

 off00host through off04proc

 Exercise: modify off00host to offload a single line of code,

 a block of code, an OpenMP region, or a procedure that

 you write. See off01 through off04 respectively for

 appropriate ways to do so.

 Exercise: export OFFLOAD_REPORT=1, then 2, then 3, and observe

 the results on your offloaded code(s). Experiment as well

 with the compiler flag "-opt-report-phase=offload".

 Exercise: remove all declspec/attribute decorations, then

 compile with "-offload-attribute-target=mic" and observe

 the results.

 off05global

 Exercise: experiment with decorated and undecorated variables

 of various types (global, static, automatic) and observe the

 effect on compilation/execution. Observe as well the effect

 on the output results generated by OFFLOAD_REPORT.

 Exercise: remove all declspec/attribute decorations, then

 compile with "-offload-attribute-target=mic" and observe

 the results.

 off06stack

 Exercise: experiment with appropriate and inappropriate

 choices of in, out, in/out, and nocopy and observe the

 results.

 Exercise: experiment with MIC_STACKSIZE and the size of the

 arrays. For example, increase array size until the code

 exceeds stack limits, then modify the stack limits to

 fix the problem. Try to predict in advance the array size

 that will cause problems. How does the code behave when

 you exceed stack limits?

 Exercise: in the C code, define "const int N=100000", then

 replace the hard-wired literal "100000" with N. Use icc

 to compile the program as C code, then use icpc to compile

 the program as C++ code (icpc interprets the .c suffix

 as a C++ source file). Expect a difference in behavior.

 off07heap

 Exercise: experiment with the size of the arrays.

 How large a heap are you able to offload? Attempt

 to predict in advance the problem size at which

 you might begin to expect trouble. How does the

 code behave if you attempt to use too much memory?

3

 Exercise: export OFFLOAD_REPORT=1, then 2, then 3, and observe

 the results on your offloaded code(s). Experiment as well

 with the compiler flag "-opt-report-phase=offload".

 How do the reports for heap data differ from those for

 stack data? How do reported times vary with problem

 size? What do you think the reported times are

 measuring?

 off08asynch

 Exercise: experiment with signal and wait settings to

 generate conditions under which the asynchronous

 offload does and does not finish before the code

 prints the results.

 Exercise: experiment with offload vs offload_wait;

 compare the functionality.

 off09transfer

 Exercise: experiment with signal and wait settings to

 generate conditions under which the code does and

 does not execute properly. Conduct similar experiments

 with in/in/inout/nocopy as well as alloc_if/alloc_free.

 Exercise: given invalid offload conditions (for example,

 no MIC allocation before data is needed), compile

 the code with "-no-offload" and observe its behavior.

 MKL Automatic Offload

 Run experiments and exercises on MKL Automatic Offload using the

 Intel demonstration codes used in the tutorial. The list below

 includes suggestions and possibilities.

 To compile the C demo: icc -openmp -mkl ao_intel.c

 The resulting executable will have the name a.out.

 To compile the C demo: icc -openmp -mkl ao_intel.f

 The resulting executable will have the name a.out.

 Remember to set appropriate environment variables:

 export MKL_MIC_ENABLE=1

 export OMP_NUM_THREADS=16

 export MIC_OMP_NUM_THREADS=240

 export OFFLOAD_REPORT=2

 Suggested experiments/exercises:

 Exercise: experiment with the values of the environment

 variables (e.g. thread counts, AO enabled/disabled) and

 compare the results.

4

 Exercise: experiment with problem size and observe the results.

 At what threshold(s) does MKL begin to use the MIC?

 At what threshold(s) is it faster to use Automatic Offload?

 Exercise: experiment with work division (see

 http://software.intel.com/sites/products/documentation/

 doclib/mkl_sa/11/mkl_userguide_lnx/

 GUID-3DC4FC7D-A1E4-423D-9C0C-06AB265FFA86.htm). What

 settings are optimal?

 Experiment with two MICs in the normal-2mic queue. How much

 better can you do? With what size problems?

