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VSCSE Summer School

Proven Algorithmic Techniques for 

Many-core Processors

Lecture 1: Introduction and 

Computational Thinking



Course Objective

• To master the most commonly used algorithm 

techniques and computational thinking skills 

needed for many-core programming

– Especially the simple ones!

• Specifically, to understand

– Many-core hardware limitations and constraints

– Desirable and undesirable computation patterns

– Commonly used algorithm techniques to convert 

undesirable computation patterns into desirable ones
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Course Staff

• Instructors

– Wen-mei Hwu (UIUC), David Kirk (NVIDIA), John Stratton 

(UIUC), John Stone (UIUC)

• Keynote Speakers

– Michael Garland (NVIDIA), David Kirk (NVIDIA), Lorena Barba 

(BU)

• Guest lectures

– Jonathan Cohen (NVIDIA), Jeremy Meredith (ORNL)

• UIUC Teaching Assistants

– Xiao-Long Wu, Deepthi Nandakumar, Liwen Chang, Hee-seok 

Kim, Nasser Anssari, 

• Local Coordinators, Teaching Assistants, Technical Staff
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• An enlarging peak performance advantage:
– Calculation: 1 TFLOPS vs. 100 GFLOPS

– Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

– GPU in every PC and workstation – massive volume and potential 
impact

Performance Advantage of GPUs

Courtesy: John Owens
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CPUs and GPUs have 

fundamentally different design 

philosophies.



Harvesting Performance Benefit of 

Many-core GPU Requires

• Massive parallelism in application algorithms

– Data parallelism

• Regular computation and data accesses

– Similar work for parallel threads

• Avoidance of conflicts in critical resources

– Off-chip DRAM (Global Memory) bandwidth

– Conflicting parallel updates to memory locations
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Massive Parallelism - Regularity
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Main Hurdles to Overcome

• Serialization due to 

conflicting use of 

critical resources

• Over subscription of 

Global Memory 

bandwidth

• Load imbalance 

among parallel threads
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“CUDA is an elegant solution to 

the problem of representing 

parallelism in algorithms, not all 

algorithms, but enough to matter.”

V. Natoli, Kudos for CUDA, HPCWire
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Computational Thinking Skills

• The ability to translate/formulate domain 

problems into computational models that can be 

solved efficiently by available computing 

resources

– Understanding the relationship between the domain 

problem and the computational models

– Understanding the strength and limitations of the 

computing devices

– Designing the model implementations to steer 

away from the limitations



DATA ACCESS CONFLICTS
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Conflicting Data Accesses Cause 

Serialization and Delays

• Massively parallel 

execution cannot 

afford serialization

• Contentions in 

accessing critical data 

causes serialization
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A Simple Example

• A naïve inner product algorithm of two vectors of 

one million elements each

– All multiplications can be done in time unit (parallel)

– Additions to a single accumulator in one million time 

units (serial)
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How much can conflicts hurt?

• Amdahl’s Law

– If fraction X of a computation is serialized, the 

speedup can not be more than 1/(1-X)

• In the previous example, X = 50%

– Half the calculations are serialized

– No more than 2X speedup, no matter how many 

computing cores are used
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GLOBAL MEMORY 

BANDWIDTH
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Global Memory Bandwidth

Ideal Reality
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Global Memory Bandwidth

• Many-core processors have limited off-chip 

memory access bandwidth compared to peak 

compute throughput

• GT200

– 1 TFLOPS peak single precision peak throughput

– 150 GB/s peak off-chip memory access bandwidth or 

37.5 G single-precision operands per second

– To achieve peak throughput, a program must perform 

1,000/37.5 = 27 floating point arithmetic operations for 

each operand value fetched from off-chip memory, 
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Global Memory Bandwidth

• Fermi

– 1 TFLOPS SPFP peak throughput

– 0.5 TFLOPS DPFP peak throughput

– 144 GB/s peak off-chip memory access bandwidth

• 36 G SPFP operands per second 

• 18 G DPFP operands per second 

– To achieve peak throughput, a program must perform 

1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations 

for each operand value fetched from off-chip memory
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A Simple CUDA Kernel for Matrix 

Multiplication
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row][k] * Nd[k][Col];

Pd[Row][Col] = Pvalue;
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Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on 

GT200?

• Two memory accesses   
(8 bytes) per floating point 
multiply-add

• 4B/s of memory 
bandwidth/FLOPS

• 4*1,000GFLOPS = 4,000 
GB/s needed to achieve 
peak FLOP rating

• 150 GB/s limits the code 
at 37.5 GFLOPS
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Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on Fermi?

• Two memory accesses   
(8 bytes) per floating point 
multiply-add

• 4B/s of memory 
bandwidth/FLOPS

• 4*1,000GFLOPS = 4,000 
GB/s needed to achieve 
peak SP FLOP rating

• 8*500GFLOPS = 4,000 
GB/s needed to achieve 
peak DP FLOP rating

• 144 GB/s limits the code 
at 36 SP / 18 DP GFLOPS
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REDUCING REDUNDANCY
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Computational Efficiency

• Parallel execution sometime requires doing 

redundant work

• Total parallel execution may result in too much 

redundant work and longer execution
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Direct Coulomb Summation (DCS) 

Where Redundancy Originates

• At each lattice point, sum potential contributions for 

all atoms in the simulated structure: 

potential[j] +=  charge[i] / (distance to atom[i])

Atom[i]

Distance to 

Atom[i]
Lattice point 

being evaluated
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DCS Initial Kernel Structure
…

float curenergy = energygrid[outaddr];  // start global mem read very early

float coorx = gridspacing * xindex;

float coory = gridspacing * yindex;

int atomid;

float energyval=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {

float dx = coorx - atominfo[atomid].x;

float dy = coory - atominfo[atomid].y;

energyval += atominfo[atomid].w *

(1.0f / sqrtf(dx*dx + dy*dy + atominfo[atomid].z));

}

energygrid[outaddr] = curenergy + energyval;
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Implementation Analysis

• Parallelism: each potential lattice point is processed in 

a different thread

• Redundancy: distance calculation (dx^2+dy^2+dz^2)

– In this case, one kernel processes all elements of a fixed z 

coordinate, a 2D “slice” of the full 3D lattice

– dz^2 is precomputed for every atom

• The primary bottleneck of the first kernel is 

instruction issue

– Too many instructions for indexes and counting loops

– Too much redundant computation among threads in x and y



LOAD BALANCE
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Load Balance

• The total amount of time to complete a parallel 

job is limited by the thread that takes the longest 

to finish
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How bad can it be?

• Assume that a job takes 100 units of time for one 

person to finish

– If we break up the job into 10 parts of 10 units each 

and have fo10 people to do it in parallel, we can get a 

10X speedup

– If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5 

units, the same 10 people will take 50 units to finish, 

with 9 of them idling for most of the time. We will get 

no more than 2X speedup.
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How does imbalancing come about?
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• Non-uniform data 

distributions

– Highly concentrated 

spatial data areas

– Astronomy, medical 

imaging, computer 

vision, rendering, …

• If each thread 

processes the input 

data of a given spatial 

volume unit, some will 

do a lot more work 

than others



Known Algorithm Techniques

• Increasing locality in dense arrays 

– tiling of data access and layout

• Improving efficiency and vectorization in dense 

arrays 

– granularity coarsening

• Reducing output interference 

– conversion from scatter to gather

– parallelizing reductions and histograms
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Known Algorithm Techniques 

(cont.)

• Dealing with non-uniform data 

– data sorting and binning

• Dealing with sparse data 

– sorting and packing

• Dealing with dynamic data 

– parallel queue-based algorithms

• Improving data efficiency in large data traversal 

– stencil and other grid-based computation
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You can do it.

• Computational thinking 

is not as hard as you 

may think it is.

– Most techniques have 

been explained, if at all, 

at the level of computer 

experts.

– The purpose of the 

course is to make them 

accessible to domain 

scientists and engineers.
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Agenda (Monday)

• 10:00 – 11:30 Lecture 1 – Introduction to 

computational thinking for many-core computing 

• 12:30 – 2:00 Lecture 2 – Scatter-to-Gather 

transformation for scalability

• 3:00 – 4:30 Lecture 3  - Loop blocking and 

register tiling for locality

• Lab 1 – 2D Blocking and Register tiling
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Agenda (Tuesday)

• Lecture 4 – Cut-off and Binning for regular data 

sets

• Lecture 5 – Data Layout for Grid Applications

• Keynote 1 – Michael Garland (NVIDIA) 

– Algorithm Design for GPU Computing

• Lab 1 – 2D Blocking and Register tiling

• Lab 2 - Data Layout Transformation for LBM 

Methods and Binning for Regular Data Sets
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Agenda (Wednesday)
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• Lecture 6 – Dealing with non-uniform data 

distribution

• Lecture 7 – Dealing with dynamic data sets

– With guest lecture by Jonathan Cohen (NVIDIA) on 

PDE Solvers and OpenCurrent

• Keynote  2 – David Kirk (NVIDIA) 

– Fermi and Future of GPU Computing Technology

• Lab 2 - Data Layout Transformation for LBM 

Methods and Binning for Regular Data Sets

• Lab 3 – Binning for non-uniform data distribution



Agenda (Thursday)
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• Keynote 3 – Lorena Barba (Boston University)

– Multiplying speedups: fast algorithms on GPUs. A 

case study on biomolecular electrostatics.

• Lecture 8 – Transformations of key computation 

patterns

– With guest lecture from Jeremy Meredith (Oak Ridge 

National Lab) on Accelerating HPC Applications with 

GPUs – Two Case Studies"

• Hands-on Lab 3 – Data binning for non-uniform 

data distribution

• Hands-on Lab wrap-up discussions



Agenda (Friday)

• Lecture 9: Directions for Further Studies

• Closing remarks

• Certificate and student feedback online survey
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ANY MORE QUESTIONS?
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