
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

VSCSE Summer School

Proven Algorithmic Techniques for

Many-core Processors

Lecture 1: Introduction and

Computational Thinking

Course Objective

• To master the most commonly used algorithm

techniques and computational thinking skills

needed for many-core programming

– Especially the simple ones!

• Specifically, to understand

– Many-core hardware limitations and constraints

– Desirable and undesirable computation patterns

– Commonly used algorithm techniques to convert

undesirable computation patterns into desirable ones

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Course Staff

• Instructors

– Wen-mei Hwu (UIUC), David Kirk (NVIDIA), John Stratton

(UIUC), John Stone (UIUC)

• Keynote Speakers

– Michael Garland (NVIDIA), David Kirk (NVIDIA), Lorena Barba

(BU)

• Guest lectures

– Jonathan Cohen (NVIDIA), Jeremy Meredith (ORNL)

• UIUC Teaching Assistants

– Xiao-Long Wu, Deepthi Nandakumar, Liwen Chang, Hee-seok

Kim, Nasser Anssari,

• Local Coordinators, Teaching Assistants, Technical Staff

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

• An enlarging peak performance advantage:
– Calculation: 1 TFLOPS vs. 100 GFLOPS

– Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

– GPU in every PC and workstation – massive volume and potential
impact

Performance Advantage of GPUs

Courtesy: John Owens

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, Illinois,

August 2-5, 2010

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have

fundamentally different design

philosophies.

Harvesting Performance Benefit of

Many-core GPU Requires

• Massive parallelism in application algorithms

– Data parallelism

• Regular computation and data accesses

– Similar work for parallel threads

• Avoidance of conflicts in critical resources

– Off-chip DRAM (Global Memory) bandwidth

– Conflicting parallel updates to memory locations

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Massive Parallelism - Regularity

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Main Hurdles to Overcome

• Serialization due to

conflicting use of

critical resources

• Over subscription of

Global Memory

bandwidth

• Load imbalance

among parallel threads

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

“CUDA is an elegant solution to

the problem of representing

parallelism in algorithms, not all

algorithms, but enough to matter.”

V. Natoli, Kudos for CUDA, HPCWire

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Computational Thinking Skills

• The ability to translate/formulate domain

problems into computational models that can be

solved efficiently by available computing

resources

– Understanding the relationship between the domain

problem and the computational models

– Understanding the strength and limitations of the

computing devices

– Designing the model implementations to steer

away from the limitations

DATA ACCESS CONFLICTS

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Conflicting Data Accesses Cause

Serialization and Delays

• Massively parallel

execution cannot

afford serialization

• Contentions in

accessing critical data

causes serialization

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Simple Example

• A naïve inner product algorithm of two vectors of

one million elements each

– All multiplications can be done in time unit (parallel)

– Additions to a single accumulator in one million time

units (serial)

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

*

*

*

*

*

+

*

+ + + ……

Time

How much can conflicts hurt?

• Amdahl’s Law

– If fraction X of a computation is serialized, the

speedup can not be more than 1/(1-X)

• In the previous example, X = 50%

– Half the calculations are serialized

– No more than 2X speedup, no matter how many

computing cores are used

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

GLOBAL MEMORY

BANDWIDTH

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Global Memory Bandwidth

Ideal Reality

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Global Memory Bandwidth

• Many-core processors have limited off-chip

memory access bandwidth compared to peak

compute throughput

• GT200

– 1 TFLOPS peak single precision peak throughput

– 150 GB/s peak off-chip memory access bandwidth or

37.5 G single-precision operands per second

– To achieve peak throughput, a program must perform

1,000/37.5 = 27 floating point arithmetic operations for

each operand value fetched from off-chip memory,

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Global Memory Bandwidth

• Fermi

– 1 TFLOPS SPFP peak throughput

– 0.5 TFLOPS DPFP peak throughput

– 144 GB/s peak off-chip memory access bandwidth

• 36 G SPFP operands per second

• 18 G DPFP operands per second

– To achieve peak throughput, a program must perform

1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations

for each operand value fetched from off-chip memory

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Simple CUDA Kernel for Matrix

Multiplication
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row][k] * Nd[k][Col];

Pd[Row][Col] = Pvalue;

}©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on

GT200?

• Two memory accesses
(8 bytes) per floating point
multiply-add

• 4B/s of memory
bandwidth/FLOPS

• 4*1,000GFLOPS = 4,000
GB/s needed to achieve
peak FLOP rating

• 150 GB/s limits the code
at 37.5 GFLOPS

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on Fermi?

• Two memory accesses
(8 bytes) per floating point
multiply-add

• 4B/s of memory
bandwidth/FLOPS

• 4*1,000GFLOPS = 4,000
GB/s needed to achieve
peak SP FLOP rating

• 8*500GFLOPS = 4,000
GB/s needed to achieve
peak DP FLOP rating

• 144 GB/s limits the code
at 36 SP / 18 DP GFLOPS

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

REDUCING REDUNDANCY

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Computational Efficiency

• Parallel execution sometime requires doing

redundant work

• Total parallel execution may result in too much

redundant work and longer execution

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010
Unique

Redundant

4-way

parallel

2-way

parallel

Time

© John Stratton, David Kirk/NVIDIA and Wen-mei W. Hwu

PUMPS Workshop, Barcelona, España, 2010

24

Direct Coulomb Summation (DCS)

Where Redundancy Originates

• At each lattice point, sum potential contributions for

all atoms in the simulated structure:

potential[j] += charge[i] / (distance to atom[i])

Atom[i]

Distance to

Atom[i]
Lattice point

being evaluated

© John Stratton, David Kirk/NVIDIA and Wen-mei W. Hwu

PUMPS Workshop, Barcelona, España, 2010

25

DCS Initial Kernel Structure
…

float curenergy = energygrid[outaddr]; // start global mem read very early

float coorx = gridspacing * xindex;

float coory = gridspacing * yindex;

int atomid;

float energyval=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {

float dx = coorx - atominfo[atomid].x;

float dy = coory - atominfo[atomid].y;

energyval += atominfo[atomid].w *

(1.0f / sqrtf(dx*dx + dy*dy + atominfo[atomid].z));

}

energygrid[outaddr] = curenergy + energyval;

© John Stratton, David Kirk/NVIDIA and Wen-mei W. Hwu

PUMPS Workshop, Barcelona, España, 2010

26

Implementation Analysis

• Parallelism: each potential lattice point is processed in

a different thread

• Redundancy: distance calculation (dx^2+dy^2+dz^2)

– In this case, one kernel processes all elements of a fixed z

coordinate, a 2D “slice” of the full 3D lattice

– dz^2 is precomputed for every atom

• The primary bottleneck of the first kernel is

instruction issue

– Too many instructions for indexes and counting loops

– Too much redundant computation among threads in x and y

LOAD BALANCE

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Load Balance

• The total amount of time to complete a parallel

job is limited by the thread that takes the longest

to finish

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

good bad

How bad can it be?

• Assume that a job takes 100 units of time for one

person to finish

– If we break up the job into 10 parts of 10 units each

and have fo10 people to do it in parallel, we can get a

10X speedup

– If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5

units, the same 10 people will take 50 units to finish,

with 9 of them idling for most of the time. We will get

no more than 2X speedup.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

How does imbalancing come about?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

• Non-uniform data

distributions

– Highly concentrated

spatial data areas

– Astronomy, medical

imaging, computer

vision, rendering, …

• If each thread

processes the input

data of a given spatial

volume unit, some will

do a lot more work

than others

Known Algorithm Techniques

• Increasing locality in dense arrays

– tiling of data access and layout

• Improving efficiency and vectorization in dense

arrays

– granularity coarsening

• Reducing output interference

– conversion from scatter to gather

– parallelizing reductions and histograms

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Known Algorithm Techniques

(cont.)

• Dealing with non-uniform data

– data sorting and binning

• Dealing with sparse data

– sorting and packing

• Dealing with dynamic data

– parallel queue-based algorithms

• Improving data efficiency in large data traversal

– stencil and other grid-based computation

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

You can do it.

• Computational thinking

is not as hard as you

may think it is.

– Most techniques have

been explained, if at all,

at the level of computer

experts.

– The purpose of the

course is to make them

accessible to domain

scientists and engineers.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Agenda (Monday)

• 10:00 – 11:30 Lecture 1 – Introduction to

computational thinking for many-core computing

• 12:30 – 2:00 Lecture 2 – Scatter-to-Gather

transformation for scalability

• 3:00 – 4:30 Lecture 3 - Loop blocking and

register tiling for locality

• Lab 1 – 2D Blocking and Register tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Agenda (Tuesday)

• Lecture 4 – Cut-off and Binning for regular data

sets

• Lecture 5 – Data Layout for Grid Applications

• Keynote 1 – Michael Garland (NVIDIA)

– Algorithm Design for GPU Computing

• Lab 1 – 2D Blocking and Register tiling

• Lab 2 - Data Layout Transformation for LBM

Methods and Binning for Regular Data Sets

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Agenda (Wednesday)

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

• Lecture 6 – Dealing with non-uniform data

distribution

• Lecture 7 – Dealing with dynamic data sets

– With guest lecture by Jonathan Cohen (NVIDIA) on

PDE Solvers and OpenCurrent

• Keynote 2 – David Kirk (NVIDIA)

– Fermi and Future of GPU Computing Technology

• Lab 2 - Data Layout Transformation for LBM

Methods and Binning for Regular Data Sets

• Lab 3 – Binning for non-uniform data distribution

Agenda (Thursday)

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

• Keynote 3 – Lorena Barba (Boston University)

– Multiplying speedups: fast algorithms on GPUs. A

case study on biomolecular electrostatics.

• Lecture 8 – Transformations of key computation

patterns

– With guest lecture from Jeremy Meredith (Oak Ridge

National Lab) on Accelerating HPC Applications with

GPUs – Two Case Studies"

• Hands-on Lab 3 – Data binning for non-uniform

data distribution

• Hands-on Lab wrap-up discussions

Agenda (Friday)

• Lecture 9: Directions for Further Studies

• Closing remarks

• Certificate and student feedback online survey

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

