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A Common Sequential Computation 

Pattern
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for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

out[n] += f(in[m], m, n);

}

}

A Simple Code Example

• Input data in
– M = # scan points

• Output data out
– N = # regularized 

scan points

• Complexity is O(MN)

• Output tends to be 
more regular than 
input
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Scatter Parallelization
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Thread 1 Thread 2 …

in

out



Scatter can be very slow.

• All threads have conflicting updates to the same 

out elements

– Serialized with atomic operations

– Very costly (slow) for large number of threads
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Gather Parallelization
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Thread 1 Thread 2 …

in

out



Gather can be very fast.

• All threads can read the same in elements

– No serialization

– Can even be efficiently consolidated through caches 

or local memories
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Why is scatter parallelization often 

used rather than gather?

• In practice, each in does not affect all out 

elements

• Out tend to be much more regular than in

• It is easy to calculate all  out elements affected by 

an in element

– Harder to calculate all in elements to affect an out

– Easy thread kernel code if written in scatter
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Challenges in Gather Parallelization

• Regularize input elements so that it is easier to 

find all in elements that affects an out element

– Cut-off Binning Lecture

• Can be even more challenging if data is highly 

non-uniform

– Cut-off Binning for Non-Uniform Data Lecture

• For this lecture, we assume that all in elements 

affect all out elements
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Molecular Modeling: Ion Placement

• Biomolecular simulations 
attempt to replicate in vivo
conditions in silico

• Model structures are initially 
constructed in vacuum

• Solvent (water) and ions are 
added as necessary to 
reproduce the required 
biological conditions

• Computational requirements 
scale with the size of the 
simulated structure
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Overview of Ion Placement Process

• Calculate initial electrostatic potential map 

around the simulated structure considering the 

contributions of all atoms

– Most time consuming, focus of our example.

• Ions are then placed one at a time:

– Find the voxel containing the minimum potential value

– Add a new ion atom at location of minimum potential

– Add the potential contribution of the newly placed ion 

to the entire map

– Repeat until the required number of ions have been 

added 
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Overview of Direct Coulomb 

Summation (DCS) Algorithm
• One of several ways to compute the electrostatic 

potentials on a grid, ideally suited for the GPU

• All atoms affect all map lattice points, most accurate

• Approximation-based methods such as multilevel 

summation can achieve much higher performance at the 

cost of some numerical accuracy and flexibility

– Will cover these later

• DCS: for each lattice point, sum potential contributions for 

all atoms in the simulated structure: 

potential +=  charge[i] / (distance to atom[i])
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Direct Coulomb Summation (DCS) 

Algorithm Detail

• At each lattice point, sum potential contributions 

for all atoms in the simulated structure: 

potential +=  charge[i] / (distance to atom[i])

Atom[i]

Distance to 

Atom[i]
Lattice point 

being evaluated



Electrostatic Potential Map 

Calculation Function Overview

• Each call calculates an x-y slice of the energy map

– energygrid – pointer to the entire potential map

– grid – the x, y, z dimensions of the potential map

– gridspacing – modeled physical distance between grid 

points

– atoms – array of x, y, z coordinates and charge of atoms

– numatoms – number of atoms in atoms array

void cenergy(float *energygrid, dim3 grid, float 

gridspacing, float z, const float *atoms, int 

numatoms) {}
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An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {

int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value

float dz2 = dz*dz;

int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

float charge = atoms[n+3];

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;

float dy = y - atoms[n+1];  // all grid points in a row have the same y value

float dy2 = dy*dy;

int grid_row_offset =  grid_slice_offset+ grid.x*j;

for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float dx = x - atoms[n    ];

energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}

}

} }



Summary of Simple Sequential C 

Version

• Algorithm is input oriented

– For each input atom, calculate its contribution to all 

grid points in an x-y slice

• Output (energygrid) is very regular

– Simple linear mapping between grid point indices and 

modeled physical coordinates

• Input (atom) is irregular

– Modeled x,y,z coordinate of each atom needs to be 

stored in the atom array

• The algorithm is efficient in performing minimal 

calculations on distances, coordinates, etc.
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Irregular Input vs. Regular Output

• Atoms come from 
modeled molecular 
structures, solvent 
(water) and ions

– Irregular by necessity

• Energy grid models 
the electrostatic 
potential value at 
regularly spaced 
points

– Regular by design



Straightforward CUDA Parallelization

• Use each thread to compute the contribution of 

an atom to all grid points

– Scatter parallelization

• Kernel code largely correspond to CPU version 

with outer loop stripped

– Each thread corresponds to an outer loop iteration of 

CPU version

– Numatoms used in kernel launch configuration host 

code
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CUDA DCS Implementation 

Overview
• Allocate and initialize potential map memory on host CPU

• Allocate potential map slice buffer on GPU

• Preprocess atom coordinates and charges

• Loop over slices:

– Copy slice from host to GPU

– Loop over groups of atoms:

• Copy atom data to GPU

• Run CUDA Kernel on atoms and slice resident on GPU

– Copy slice from GPU to host

• Free resources
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A Very Slow DCS Scatter Kernel!
void  __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing, 

float z) {

int n = blockIdx.x * blockDim .x + threadIdx.x;

float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value

float dz2 = dz*dz;

int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

float charge = atoms[n+3];

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;

float dy = y - atoms[n+1];  // all grid points in a row have the same y value

float dy2 = dy*dy;

int grid_row_offset =  grid_slice_offset+ grid.x*j;

for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float dx = x - atoms[n    ];

energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx + dy2+ dz2));

}

}

}

}

Needs to be done as 

an atomic operation



Pros and Cons of the Scatter 

Kernel

• Pros

– Follows closely the CPU version

– Good for software engineering and code maintenance

– Preserves computation efficiency (coordinates, 

distances, offsets) of sequential code

• Cons

– The atomic add serializes the execution, very slow!

– Not even worth trying this yourself.
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A Slower Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;

for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}

energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

}

}



Pros and Cons of the Slower 

Sequential Code

• Pros

– Fewer access to the energygrid array

– Simpler code structure

• Cons

– Many more calculations on the coordinates 

– More access to the atom array 

– Overall, much slower sequential execution due to the 

sheer number of calculations performed
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DCS CUDA Block/Grid Decomposition 
(no register tiling)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks: 

64-256 threads

Threads compute

1 potential each
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A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float 

*atoms, int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

float y = gridspacing * (float) j;

float x = gridspacing * (float) i;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}

energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}



Additional Comments

• Further optimizations

– dz*dz can be pre-calculated and sent in place of z

• Gather kernel is much faster than a scatter 

kernel

– Whereas the CPU sequential code prefers scatter 

style code

• Compute efficient sequential algorithm does not 

translate into the fast parallel algorithm

– Gather vs. scatter is a big factor

– But we will come back to this point later!
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Even More Comments

• In modern CPUs, cache effectiveness is often 

more important than compute efficiency

• The input oriented sequential code actually has 

very bad cache performance

– energygrid[] is a very large array, typically 20X or 

more larger than atom[]

– The input oriented sequential code sweeps through 

the large data structure for each atom, trashing cache.

• The fastest sequential code is actually an 

optimized output oriented code
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Outline of A Fast Sequential Code

for all z {

for all atoms {precompute dz2 }

for all y {

for all atoms {precompute dy2 (+ dz2) }

for all x {

for all atoms {

compute contribution to current x,y,z point

using precomputed dy2 and dz2

} 

}   }   }
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REGISTER TILING FOR 

EFFICIENCY
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Basic Idea

• Parallel execution sometime requires doing 

redundant work

– Merging multiple threads into one allows re-use of 

result, avoiding redundant work
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Redundant

4-way

parallel

2-way

parallel

Time



Outline of Technique

• Merge multiple threads so each resulting thread 

calculates multiple output elements

– Perform the redundant work once and save result into 

registers

– Use register result for calculating all output elements

• Merged kernel code will use more registers

– May reduce the number of threads allowed on an SM

– Increased efficiency may outweigh reduced 

parallelism

• Also referred to as thread coarsening
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For DCS Kernel

• merge threads to calculate more than one lattice 

point per thread, resulting in larger computational 

tiles:

– Thread count per block must be decreased to reduce 

computational tile size as per thread work is increased

– Otherwise, tile size gets bigger as threads do more 

than one lattice point evaluation, resulting on a 

significant increase in padding and wasted 

computations at edges
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• Add each atom’s contribution to several lattice 

points at a time, where distances only differ in 

one component:
potentialA +=  charge[i] / (distanceA to atom[i]) 

potentialB +=  charge[i] / (distanceB to atom[i])

…

DCS Kernel with Register Tiling

Atom[i]

Distances to 

Atom[i]
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DCS CUDA Block/Grid Decomposition 

(Coarsened, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 

64-256 threads

…

Coarsening increases 

computational tile size

Threads compute

up to 8 potentials, 

skipping by half-warps
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DCS Coarsened Kernel Structure

• Processes 8 lattice points at a time in the inner 

loop

• Subsequent lattice points computed by each 

thread are offset by a half-warp to guarantee 

coalesced memory accesses

• Loads and increments 8 potential map lattice 

points from global memory at completion of of 

the summation, avoiding register consumption
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Coarsened Kernel Inner Loop 

Outline
u

for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;

float dysqpdzsq = (dy * dy) + atominfo[atomid].z;

float dx1 = coorx1 - atominfo[atomid].x;

float dx2 = coorx2 - atominfo[atomid].x;

float dx3 = coorx3 - atominfo[atomid].x;

float dx4 = coorx4 - atominfo[atomid].x;

energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));

energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));

energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq));

energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));

}

…
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More Comments on Coarsened Kernel

• Pros:

– We can reduce the number of loads by reusing atom coordinate 

values for multiple voxels, by storing in regs

– By merging multiple points into each thread, we can compute 

dy^2+dz^2 once and use it multiple times, much like the fast CPU 

version of the code

– A good balance between efficiency, locality and parallelism

• Cons:

– Uses more registers, one of several limited resources

– Increases effective tile size, or decreases thread count in a block, 

though not a problem at this level



ANY MORE QUESTIONS?
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