
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

VSCSE Summer School

Proven Algorithmic Techniques for

Many-core Processors

Lecture 2: Parallelism Scalability

Transformations

A Common Sequential Computation

Pattern

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Double

Nested

Loop iterate over out

iterate over in

in

out

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

out[n] += f(in[m], m, n);

}

}

A Simple Code Example

• Input data in
– M = # scan points

• Output data out
– N = # regularized

scan points

• Complexity is O(MN)

• Output tends to be
more regular than
input

Gridding1

kx

ky

kx

ky

Scatter Parallelization

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Thread 1 Thread 2 …

in

out

Scatter can be very slow.

• All threads have conflicting updates to the same

out elements

– Serialized with atomic operations

– Very costly (slow) for large number of threads

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

+

*

+ + + ……

Time

+

*

+ + + ……

All threads update out[0] All threads update out[1]

Gather Parallelization

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Thread 1 Thread 2 …

in

out

Gather can be very fast.

• All threads can read the same in elements

– No serialization

– Can even be efficiently consolidated through caches

or local memories

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

+

*

+

+

+

…

Time

All threads update their

own out elements+

*

+

+

+

+

*

+

+

+

Why is scatter parallelization often

used rather than gather?

• In practice, each in does not affect all out

elements

• Out tend to be much more regular than in

• It is easy to calculate all out elements affected by

an in element

– Harder to calculate all in elements to affect an out

– Easy thread kernel code if written in scatter

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

kx

ky

kx

ky

Challenges in Gather Parallelization

• Regularize input elements so that it is easier to

find all in elements that affects an out element

– Cut-off Binning Lecture

• Can be even more challenging if data is highly

non-uniform

– Cut-off Binning for Non-Uniform Data Lecture

• For this lecture, we assume that all in elements

affect all out elements

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Molecular Modeling: Ion Placement

• Biomolecular simulations
attempt to replicate in vivo
conditions in silico

• Model structures are initially
constructed in vacuum

• Solvent (water) and ions are
added as necessary to
reproduce the required
biological conditions

• Computational requirements
scale with the size of the
simulated structure

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Overview of Ion Placement Process

• Calculate initial electrostatic potential map

around the simulated structure considering the

contributions of all atoms

– Most time consuming, focus of our example.

• Ions are then placed one at a time:

– Find the voxel containing the minimum potential value

– Add a new ion atom at location of minimum potential

– Add the potential contribution of the newly placed ion

to the entire map

– Repeat until the required number of ions have been

added

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Overview of Direct Coulomb

Summation (DCS) Algorithm
• One of several ways to compute the electrostatic

potentials on a grid, ideally suited for the GPU

• All atoms affect all map lattice points, most accurate

• Approximation-based methods such as multilevel

summation can achieve much higher performance at the

cost of some numerical accuracy and flexibility

– Will cover these later

• DCS: for each lattice point, sum potential contributions for

all atoms in the simulated structure:

potential += charge[i] / (distance to atom[i])

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Direct Coulomb Summation (DCS)

Algorithm Detail

• At each lattice point, sum potential contributions

for all atoms in the simulated structure:

potential += charge[i] / (distance to atom[i])

Atom[i]

Distance to

Atom[i]
Lattice point

being evaluated

Electrostatic Potential Map

Calculation Function Overview

• Each call calculates an x-y slice of the energy map

– energygrid – pointer to the entire potential map

– grid – the x, y, z dimensions of the potential map

– gridspacing – modeled physical distance between grid

points

– atoms – array of x, y, z coordinates and charge of atoms

– numatoms – number of atoms in atoms array

void cenergy(float *energygrid, dim3 grid, float

gridspacing, float z, const float *atoms, int

numatoms) {}
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

float dz2 = dz*dz;

int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

float charge = atoms[n+3];

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;

float dy = y - atoms[n+1]; // all grid points in a row have the same y value

float dy2 = dy*dy;

int grid_row_offset = grid_slice_offset+ grid.x*j;

for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float dx = x - atoms[n];

energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}

}

} }

Summary of Simple Sequential C

Version

• Algorithm is input oriented

– For each input atom, calculate its contribution to all

grid points in an x-y slice

• Output (energygrid) is very regular

– Simple linear mapping between grid point indices and

modeled physical coordinates

• Input (atom) is irregular

– Modeled x,y,z coordinate of each atom needs to be

stored in the atom array

• The algorithm is efficient in performing minimal

calculations on distances, coordinates, etc.
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Irregular Input vs. Regular Output

• Atoms come from
modeled molecular
structures, solvent
(water) and ions

– Irregular by necessity

• Energy grid models
the electrostatic
potential value at
regularly spaced
points

– Regular by design

Straightforward CUDA Parallelization

• Use each thread to compute the contribution of

an atom to all grid points

– Scatter parallelization

• Kernel code largely correspond to CPU version

with outer loop stripped

– Each thread corresponds to an outer loop iteration of

CPU version

– Numatoms used in kernel launch configuration host

code

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

CUDA DCS Implementation

Overview
• Allocate and initialize potential map memory on host CPU

• Allocate potential map slice buffer on GPU

• Preprocess atom coordinates and charges

• Loop over slices:

– Copy slice from host to GPU

– Loop over groups of atoms:

• Copy atom data to GPU

• Run CUDA Kernel on atoms and slice resident on GPU

– Copy slice from GPU to host

• Free resources

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing,

float z) {

int n = blockIdx.x * blockDim .x + threadIdx.x;

float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

float dz2 = dz*dz;

int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

float charge = atoms[n+3];

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;

float dy = y - atoms[n+1]; // all grid points in a row have the same y value

float dy2 = dy*dy;

int grid_row_offset = grid_slice_offset+ grid.x*j;

for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float dx = x - atoms[n];

energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2));

}

}

}

}

Needs to be done as

an atomic operation

Pros and Cons of the Scatter

Kernel

• Pros

– Follows closely the CPU version

– Good for software engineering and code maintenance

– Preserves computation efficiency (coordinates,

distances, offsets) of sequential code

• Cons

– The atomic add serializes the execution, very slow!

– Not even worth trying this yourself.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;

for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}

energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

}

}

Pros and Cons of the Slower

Sequential Code

• Pros

– Fewer access to the energygrid array

– Simpler code structure

• Cons

– Many more calculations on the coordinates

– More access to the atom array

– Overall, much slower sequential execution due to the

sheer number of calculations performed

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

DCS CUDA Block/Grid Decomposition
(no register tiling)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:

64-256 threads

Threads compute

1 potential each

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float

*atoms, int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;

float y = gridspacing * (float) j;

float x = gridspacing * (float) i;

float energy = 0.0f;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}

energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

Additional Comments

• Further optimizations

– dz*dz can be pre-calculated and sent in place of z

• Gather kernel is much faster than a scatter

kernel

– Whereas the CPU sequential code prefers scatter

style code

• Compute efficient sequential algorithm does not

translate into the fast parallel algorithm

– Gather vs. scatter is a big factor

– But we will come back to this point later!

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Even More Comments

• In modern CPUs, cache effectiveness is often

more important than compute efficiency

• The input oriented sequential code actually has

very bad cache performance

– energygrid[] is a very large array, typically 20X or

more larger than atom[]

– The input oriented sequential code sweeps through

the large data structure for each atom, trashing cache.

• The fastest sequential code is actually an

optimized output oriented code

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Outline of A Fast Sequential Code

for all z {

for all atoms {precompute dz2 }

for all y {

for all atoms {precompute dy2 (+ dz2) }

for all x {

for all atoms {

compute contribution to current x,y,z point

using precomputed dy2 and dz2

}

} } }

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

REGISTER TILING FOR

EFFICIENCY

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Basic Idea

• Parallel execution sometime requires doing

redundant work

– Merging multiple threads into one allows re-use of

result, avoiding redundant work

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010
Unique

Redundant

4-way

parallel

2-way

parallel

Time

Outline of Technique

• Merge multiple threads so each resulting thread

calculates multiple output elements

– Perform the redundant work once and save result into

registers

– Use register result for calculating all output elements

• Merged kernel code will use more registers

– May reduce the number of threads allowed on an SM

– Increased efficiency may outweigh reduced

parallelism

• Also referred to as thread coarsening

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

For DCS Kernel

• merge threads to calculate more than one lattice

point per thread, resulting in larger computational

tiles:

– Thread count per block must be decreased to reduce

computational tile size as per thread work is increased

– Otherwise, tile size gets bigger as threads do more

than one lattice point evaluation, resulting on a

significant increase in padding and wasted

computations at edges

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

• Add each atom’s contribution to several lattice

points at a time, where distances only differ in

one component:
potentialA += charge[i] / (distanceA to atom[i])

potentialB += charge[i] / (distanceB to atom[i])

…

DCS Kernel with Register Tiling

Atom[i]

Distances to

Atom[i]

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

DCS CUDA Block/Grid Decomposition

(Coarsened, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:

64-256 threads

…

Coarsening increases

computational tile size

Threads compute

up to 8 potentials,

skipping by half-warps

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

DCS Coarsened Kernel Structure

• Processes 8 lattice points at a time in the inner

loop

• Subsequent lattice points computed by each

thread are offset by a half-warp to guarantee

coalesced memory accesses

• Loads and increments 8 potential map lattice

points from global memory at completion of of

the summation, avoiding register consumption

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Coarsened Kernel Inner Loop

Outline
u

for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;

float dysqpdzsq = (dy * dy) + atominfo[atomid].z;

float dx1 = coorx1 - atominfo[atomid].x;

float dx2 = coorx2 - atominfo[atomid].x;

float dx3 = coorx3 - atominfo[atomid].x;

float dx4 = coorx4 - atominfo[atomid].x;

energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));

energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));

energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq));

energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));

}

…

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

More Comments on Coarsened Kernel

• Pros:

– We can reduce the number of loads by reusing atom coordinate

values for multiple voxels, by storing in regs

– By merging multiple points into each thread, we can compute

dy^2+dz^2 once and use it multiple times, much like the fast CPU

version of the code

– A good balance between efficiency, locality and parallelism

• Cons:

– Uses more registers, one of several limited resources

– Increases effective tile size, or decreases thread count in a block,

though not a problem at this level

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

