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Objective

• Reuse each data accessed from the global 

memory multiple times

– Across threads – shared memory blocking

– With a thread - register tiling

• Register tiling is also often used to re-use 

computation results for increased efficiency.
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Basic Idea
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Basic Concept of Blocking/Tiling

• In a congested traffic 

system, significant 

reduction of  vehicles 

can greatly improve the 

delay seen by all 

vehicles

– Carpooling for commutes

– Blocking/Tiling for global 

memory accesses
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Some computations are more 

challenging to block/tile than others.

• Some carpools may 

be easier than others

– More efficient if 

neighbors are also 

classmates or co-

workers

– Some vehicles may be 

more suitable for 

carpooling

• Similar variations exist 

in blocking/tiling
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Carpools need synchronization.

• Good – when people have similar schedule

• Bad – when people have very different schedule
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Same with Blocking/Tiling

• Good – when threads have similar access timing

• Bad – when threads have very different timing
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Outline of Technique

• Identify a block/tile of global memory content that 

are accessed by multiple threads

• Load the block/tile from global memory into on-

chip memory

• Have the multiple threads to get their data from 

the on-chip memory

• Move on to the next block/tile
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Tiled Matrix Multiply

• Each row of Md is accessed by 

multiple threads

• Problem: some threads can be 

much further along than others

– An entire row may need to be in 

on-chip memory

– Not enough on-chip memory for 

large input matrices
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A Small Example

• Can we use two on-

chip memory locations 

to reduce the number 

of M accesses by the 

two threads?

– Not if the two threads 

can have very different 

timing!
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Every M and N Element is used exactly 

twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order
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Breaking Md and Nd into Tiles
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Each phase uses one tile from Md and 

one from Nd
Step 4 Step 5 Step 6

T0,0 Md0,0

↓ 

Mds0,0

Nd0,0

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

Md2,0

↓ 

Mds0,0

Nd0,2

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

T1,0 Md1,0

↓ 

Mds1,0

Nd1,0

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

Md3,0

↓ 

Mds1,0

Nd1,2

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

T0,1 Md0,1

↓ 

Mds0,1

Nd0,1

↓ 

Nds0,1
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Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

Md2,1

↓ 

Mds0,1

Nd0,3

↓ 

Nds0,1
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Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

T1,1 Md1,1

↓ 

Mds1,1

Nd1,1

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Md3,1

↓ 

Mds1,1

Nd1,3

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Phase 1 Phase 2

time
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First-order Size Considerations

• Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks

– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float 

loads from global memory for 256 * (2*16) = 

8,192 mul/add operations. 

– Memory bandwidth no longer a limiting factor
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CUDA Code – Kernel Execution 

Configuration
// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width  / TILE_WIDTH, 

Width /  TILE_WIDTH);
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1.  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row];

10. Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)];

11. __syncthreads();

12.   for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[tx][k] * Nds[k][ty];

14. __synchthreads();

15.}

16.   Pd[Row*Width+Col] = Pvalue;
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Tiled Multiply

• Each block computes one 

square sub-matrix Pdsub of size 
TILE_WIDTH

• Each thread computes one 

element of Pdsub

m

kbx

by

k

m
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Shared Memory and Threading
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• Each SM in Fermi has 64KB on-chip SRAM, partitioned 

into 48KB L1 cache and 16KB shared memory, or vice 

versa

– SM size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB 

of shared memory. 

– Can potentially have up to 8 Thread Blocks actively executing 

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 

threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB 

shared memory usage per thread block, allowing 2 or 6 thread 

blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global 

memory by a factor of 16

– A 150GB/s bandwidth can now support (150/4)*16 = 600 

GFLOPS!



More Difficult Blocking/Tiling Cases

• Some applications do not access input data in a 

uniform way

– Convolution

– PDE solvers
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STENCIL CODE EXAMPLE
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Stencil Computation

• Describes the class of nearest neighbour 

computations on structured grids.

• Each point in the grid is a weighted linear 

combination of a subset of neighbouring values.
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Overview

• Application: 7-pt Stencil Computation/ Stencil 

Probe.

• Optimizations and concepts covered : Improving 

locality and Data Reuse

– 2D Tiling in Shared Memory

– Register Tiling
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Stencil Computation

• High parallelism: Conceptually, all points in the 

grid can be updated in parallel.

• Each computation performs a global sweep 

through the data structure.

• Low computational intensity: High memory traffic 

for very few computations.

• Challenge: Exploit parallelism without overusing 

memory bandwidth

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, 

Illinois, August 2-5, 2010



Implementation Details

• General Equation:

• Separate read and write arrays.

• Mapping of arrays from 3D space to linear array 

space.
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Naïve implementation

• Each thread calculates a one-element thin 

column along the z-dimension

– Each block computes a rectangular column along the 

z-dimension

• Each thread loads its input elements from global 

memory, independently of other threads

– High read redundancy, heavy global memory traffic

• Optimization – each thread can reuse data along 

the z-dimension

– The current center input becomes the bottom input

– The current top input becomes the center input
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Sample Naïve Kernel Code
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Memory Loads in the Naïve Kernel 

• Assume no data reuse along the z-direction 

within each thread, 

– A thread loads 7 input elements for each output 

element.

• With data reuse within each thread,

– A thread loads 5 input elements for each output
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Data Reuse

• Each internal point is 

used to calculate 

seven output values

– self, 4 planar 

neighbors, top and 

bottom neighbors

• Surface, edge, and 

corner points are used 

for fewer output 

values
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Improving Locality: 2D Tiling

• Assume that all threads of a block march up the 

z-direction in synchronized phases

• In each phase, all threads calculate a 2-D slide of 

the rectangular output column

• For each phase, maintain three slices of relevant 

input data in the on-chip memories

– One top and one bottom element in each thread’s 

private registers

– All current elements also in shared memory
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Improving Locality: 2D Tiling (cont.)

• From one phase to next, the kernel code

– Moves current element to register for lower element

– Moves top element from top register to current register 

and shared memory

– Load new top element from Global Memory to register

• Need to load halo data as well

– Needed to calculate edge elements

of the column

– For each 3D  nxmxp output block to 

be computed, we need to load

(n+2)x(m+2)x(p+2) inputs.. 
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Halo overhead can hurt.

• For small n and m, the halo overhead can be 

very significant

– If n=16 and m = 8, each slice calculates 16*8=128 

output elements in each slice and needs to load 

18*10=180 input elements

– In optimized naive code, each output element needs 5 

loads from global memory, a total of 5*128=640 loads

– The total ratio of improvement is 640/180 = 3.5, rather 

than 5 times

– The value of n and m are limited by the amount of 

registers and shared memory in each SM
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CONVOLUTION EXAMPLE
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Convolution 

• A convolution kernel is used to change an input 

element to the weighed linear combination of its 

neighbors.
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Example: Convolution – Base Parallel 

Code

• Each parallel task calculates an output element

• Figure shows 

– 1D convolution with K=5 kernel

– Calculation of 3 output elements

• Highly parallel but memory bandwidth inefficient

– Uses massive threading to tolerate memory latency

– Each input element loaded up to K timesInput elements in 

main memory
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Example: convolution using on-chip caching

• Output elements calculated from cache contents

– Each input element loaded only once

– Cache pressure – (K-1+N) input elements needed for 

N output elements 

• 7/3 = 2.3,   72/32 = 5.4,  73 / 33 = 12

• For small caches, the benefit can be significantly reduced due 

to the high-ratio of additional elements loaded.

Input elements first 

loaded into cache
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Tiling for convolution is both easy 

and hard

• Convolution is conceptually easy to block

– All threads that calculate a tile of output can share a 

tile of input

• High-performance tiling can be hard to achieve

– Larger convolution kernels increase data sharing but 

also increase halo overhead

– Many 3D convolution kernels cannot be done by 

traversing along the z-dimension sequentially

– Higher-dimension convolution quickly run out of on-

chip memory space
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ANY MORE QUESTIONS?
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