VSCSE Summer School

Proven Algorithmic Techniques for
Many-core Processors

Lecture 3: Blocking/Tiling for
Locality

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Objective

* Reuse each data accessed from the global
memory multiple times
— Across threads — shared memory blocking
— With a thread - register tiling

* Register tiling Is also often used to re-use
computation results for increased efficiency.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

I .
Global Memory BaSIC Idea

Thread 1

©Wen-mei W. Hwu and D
Illinois, August 2-5, 2010

Basic Concept of Blocking/Tiling

* In a congested traffic
system, significant
reduction of vehicles
can greatly improve the
delay seen by all
vehicles

— Carpooling for commutes

— Blocking/Tiling for global
memory accesses

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Some computations are more
challenging to block/tile than others

* Some carpools may
be easier than others

— More efficient if
neighbors are also
classmates or co-
workers

— Some vehicles may be
more suitable for
carpooling

Similar variations exist

In blocking/tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, S
Illinois, August 2-5, 2010

Carpools need synchronization.

* Good — when people have similar schedule

Worker A sleep work dinner
Time
Worker B sleep work dinner

« Bad — when people have very different schedule

Worker A party sleep work
time
Worker B sleep work dinner

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Same with Blocking/Tiling

* Good — when threads have similar access timing

Thread 1
Time

Thread 1

time
Thread 2

« Bad — when threads have very different timing

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Outline of Technigue

 |dentify a block/tile of global memory content that
are accessed by multiple threads

* Load the block/tile from global memory into on-
chip memory

« Have the multiple threads to get their data from
the on-chip memory

« Move on to the next block/tile

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Tiled Matrix Multiply

 Each row of Md Is accessed by

multiple threads
* Problem: some threads can be III[
much further along than others]

— An entire row may need to be In
on-chip memory

— Not enough on-chip memory for

large input matrices
g P Fhread 1 Thread 2

1

«—r————> «—

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Small Example

« Can we use two on-
chip memory locations
to reduce the number
of M accesses by the
two threads?

— Not if the two threads
can have very different
timing!

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, |
Illinois, August 2-5, 2010

Every M and N Element is used exactly

twice In generating a 2X2 tile of P

I:)O,O I:)1,0 I:)0,1 Pl,l
thread,, | thread,, | thread,, | thread,,
IVlo,o * No,o |Vlo,o * @ MO,l * No,o MO,l * @

@)* NO,l @)* Nl,l Ml,l* NO,l Ml,l* Nl,l
MZ,O* NO,Z MZ,O* N1,2 MZ,l* NO,Z Mz,l* N1,2
MB,O* NO,3 MS,O* N1,3 MS,l* N0,3 MS,l* N1,3

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Breaking Md and Nd into Tiles

Adydf AdMd,

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Each phase uses one tile from Md and

one from Nd

TO,O Mdo’o Ndo’o Pvalue(),o += MdZ,O Ndo’z Pva|er’o +=
l l Mds, ,*Nds, o + l l Mds, ,*Nds, o +
* *
Ty | Mdyg Nd, ; Value, ; += Md,; , Nd, , PValue, , +=
| ! Masg*Nds, o+ | | | Mds, o*Nds, 5+
* *
To1 | Mdg, Nd, ; PdValue,, += Md, , Nd 3 PdValue, , +=
T,, [Md,, |Nd,, PdVaIue%l += |Mds, |Nd;5 |PdValue,, +=
* *

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

First-order Size Considerations

« Each thread block should have many threads
— TILE_WIDTH of 16 gives 16*16 = 256 threads

* There should be many thread blocks
— A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

« Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.

— Memory bandwidth no longer a limiting factor

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

CUDA Code — Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock (TILE WIDTH, TILE WIDTH) ;
dim3 dimGrid(Width / TILE WIDTH,
Width / TILE WIDTH);

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

1. shared float Mds[TILE WIDTH] [TILE WIDTH];
2. shared float Nds[TILE WIDTH] [TILE WIDTH];

3. 1int bx = blockIdx.x; int by = blockIdx.y;
4. 1int tx threadIdx.x; int ty threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE WIDTH + ty;

6. int Col = bx * TILE WIDTH + tx;

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds [tx] [ty] = MA[(m*TILE WIDTH + tx)*Width+Row];
10. Nds [tx] [ty] = Nd[Col*Width+ (m*TILE WIDTH + ty)];
11. __syncthreads () ;

12. for (int k = 0; k < TILE WIDTH; ++k)

13. Pvalue += Mds[tx][k] * Nds[k][ty]l;

14. synchthreads b
©Wen-mei W—Hwu and David Kirk/NVIDIA Urbana,

Mifhois, August 2-5, 2010

-1 ™ 1 IMr™ - - 477" 1421 1 7y — 71 1 - ™™ 1 -_. -

Tiled Multiply

Each computes one
square sub-matrix Pd , of size
TILE_WIDTH

 Each thread computes one
element of Pd,,

X
012 TLE_WIDTH-1

. |

TILE_WIDT

v

A

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, |« > X
Illinois, August 2-5, 2010

Shared Memory and Threading

Each SM in Fermi has 64KB on-chip SRAM, partitioned
Into 48KB L1 cache and 16KB shared memory, or vice
versa

— SM size is implementation dependent!

— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB
of shared memory.
— Can potentially have up to 8 Thread Blocks actively executing

« This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

— The next TILE_ WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing 2 or 6 thread
blocks active at the same time

Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16

— A 150GB/s bandwidth can now support (150/4)*16 = 600
GFLOPS!

More Difficult Blocking/Tiling Cases

« Some applications do not access input data in a
uniform way
— Convolution
— PDE solvers

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

STENCIL CODE EXAMPLE

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Stencil Computation

« Describes the class of nearest neighbour
computations on structured grids.

« Each point in the grid Is a weighted linear
combination of a subset of neighbouring values.

1),K+1
X
ij+1 k
i1, ij.k i+1,j k
il j o M
ij-1.k
1),k-1
¥

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Overview

* Application: 7-pt Stencil Computation/ Stencil
Probe.

* Optimizations and concepts covered : Improving

locality and Data Reuse

— 2D Tiling in Shared Memory
— Register Tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Stencil Computation

* High parallelism: Conceptually, all points in the
grid can be updated in parallel.

« Each computation performs a global sweep
through the data structure.

* Low computational intensity: High memory traffic
for very few computations.

« Challenge: Exploit parallelism without overusing
memory bandwidth

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Implementation Detalls

* General Equation:
Bli.jk] = CoAli,j, k] + Cyf
+ Ali— 1,5, k] +Ali,j — 1,k + Afi, 5, k — 1]
+ A+ 1.5,k + A, 5+ 1,k + Ali, 5,k +1])
« Separate read and write arrays.
« Mapping of arrays from 3D space to linear array

space.

read armay]

(o (ol [e[o(s] o)
"""'--———\.k_?;;:; ""_!_f —

wite aray|]

M

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Nalve implementation

« Each thread calculates a one-element thin
column along the z-dimension
— Each block computes a rectangular column along the
z-dimension
« Each thread loads its input elements from global
memory, independently of other threads
— High read redundancy, heavy global memory traffic

« Optimization — each thread can reuse data along
the z-dimension
— The current center input becomes the bottom input
— The current top input becomes the center input

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Sample Naive Kernel Code

bottom = H”[Ind_“f[] (nx, ny,
current = HII[[MH 3D (nx, nv,
TOop = ”|_.|[]Jll._.._ D |:_Jl"_. JlfT_ i, |
for (k= 1: k < nz-1; k+4)
Anext|Index3D (nx, nv, 1,]
bottom +

(nx,

(nx,
(1,
(n¥, n3
current /
bottom = current:
current = top;
top = AQ[[ndexsDinx,

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Memory Loads in the Naive Kernel

« Assume no data reuse along the z-direction
within each thread,

— A thread loads 7 input elements for each output
element.

« With data reuse within each thread,
— A thread loads 5 input elements for each output

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Data Reuse

* Each internal point is
used to calculate

seven output values
— self, 4 planar

neighbors, top and
bottom neighbors

« Surface, edge, and
corner points are used

for fewer output
values

o
A

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Improving Locality: 2D Tiling

« Assume that all threads of a block march up the
z-direction in synchronized phases

* In each phase, all threads calculate a 2-D slide of
the rectangular output column

* For each phase, maintain three slices of relevant
Input data in the on-chip memories

— One top and one bottom element in each thread’s
private registers

— All current elements also in shared memory

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Improving Locality: 2D Tiling (cont.)

 From one phase to next, the kernel code
— Moves current element to register for lower element

— Moves top element from top register to current register
and shared memory

— Load new top element from Global Memory to register

* Need to load halo data as well
— Needed to calculate edge elements
of the column
— For each 3D nxmxp output block to
be computed, we need to load
(N+2)x(M+2)x(p+2) Inputs..

©Wen-mei W. Hwu and DaV|d Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Halo overhead can hurt.

 For small n and m, the halo overhead can be
very significant
— |If n=16 and m = 8, each slice calculates 16*8=128

output elements in each slice and needs to load
18*10=180 input elements

— In optimized naive code, each output element needs 5
loads from global memory, a total of 5*128=640 loads

— The total ratio of improvement is 640/180 = 3.5, rather
than 5 times

— The value of n and m are limited by the amount of
registers and shared memory in each SM

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

CONVOLUTION EXAMPLE

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Convolution

* A convolution kernel is used to change an input
element to the weighed linear combination of its

neighbors.
In
“ﬁ\\
N\

Thread 1

Thread 2 °© o o

©Wen-mei W. ku(a)n%lEavid K
Illinois, August 2-5, 2010

Example: Convolution — Base Parallel
Code

« Each parallel task calculates an output element

* Figure shows
— 1D convolution with K=5 kernel
— Calculation of 3 output elements

* Highly parallel but memory bandwidth inefficient
— Uses massive threading to tolerate memory latency
— Each input element loaded up to K timg@put elements in

main memory

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Example: convolution using on-chip caching

« Output elements calculated from cache contents
— Each input element loaded only once

— Cache pressure — (K-1+N) input elements needed for
N output elements
« 7/13=2.3, 72/32=5.4, 73/33=12

« For small caches, the benefit can be significantly reduced due
to the high-ratio of additional elements loaded.

Input elements first
loaded into cache

m O HNm m
\ \\l_ e o o
©Wen-mei W. Hwu an aV|I:| iIrkINVIDIA Urban ,.n s | e EE :::: EE

Illinois, August 2-5, 2010

Tiling for convolution Is both easy
and hard

* Convolution is conceptually easy to block
— All threads that calculate a tile of output can share a
tile of input
* High-performance tiling can be hard to achieve

— Larger convolution kernels increase data sharing but
also increase halo overhead

— Many 3D convolution kernels cannot be done by
traversing along the z-dimension sequentially

— Higher-dimension convolution quickly run out of on-
chip memory space

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

