
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

VSCSE Summer School

Proven Algorithmic Techniques for

Many-core Processors

Lecture 3: Blocking/Tiling for

Locality

Objective

• Reuse each data accessed from the global

memory multiple times

– Across threads – shared memory blocking

– With a thread - register tiling

• Register tiling is also often used to re-use

computation results for increased efficiency.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Basic Idea

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Thread 1 Thread 2 …

in

Global Memory

Thread 1 Thread 2 …

Global Memory

in

On-chip Memory

Basic Concept of Blocking/Tiling

• In a congested traffic

system, significant

reduction of vehicles

can greatly improve the

delay seen by all

vehicles

– Carpooling for commutes

– Blocking/Tiling for global

memory accesses

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Some computations are more

challenging to block/tile than others.

• Some carpools may

be easier than others

– More efficient if

neighbors are also

classmates or co-

workers

– Some vehicles may be

more suitable for

carpooling

• Similar variations exist

in blocking/tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Carpools need synchronization.

• Good – when people have similar schedule

• Bad – when people have very different schedule

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Worker A

Worker B

Time

sleep

sleep work

work

dinner

dinner

Worker A

Worker B

time

sleep

sleep work

work

dinner

party

Same with Blocking/Tiling

• Good – when threads have similar access timing

• Bad – when threads have very different timing
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Thread 1

Thread 2

Time

Thread 1

Thread 2

time

…

Outline of Technique

• Identify a block/tile of global memory content that

are accessed by multiple threads

• Load the block/tile from global memory into on-

chip memory

• Have the multiple threads to get their data from

the on-chip memory

• Move on to the next block/tile

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H
T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Matrix Multiply

• Each row of Md is accessed by

multiple threads

• Problem: some threads can be

much further along than others

– An entire row may need to be in

on-chip memory

– Not enough on-chip memory for

large input matrices

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Thread 1
Thread 2

A Small Example

• Can we use two on-

chip memory locations

to reduce the number

of M accesses by the

two threads?

– Not if the two threads

can have very different

timing!

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

,

,

,0

,

,

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

Every M and N Element is used exactly

twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

Breaking Md and Nd into Tiles

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Each phase uses one tile from Md and

one from Nd
Step 4 Step 5 Step 6

T0,0 Md0,0

↓

Mds0,0

Nd0,0

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

Md2,0

↓

Mds0,0

Nd0,2

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

↓

Mds1,0

Nd1,0

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

Md3,0

↓

Mds1,0

Nd1,2

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

↓

Mds0,1

Nd0,1

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

Md2,1

↓

Mds0,1

Nd0,3

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

↓

Mds1,1

Nd1,1

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Md3,1

↓

Mds1,1

Nd1,3

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Phase 1 Phase 2

time
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

First-order Size Considerations

• Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks

– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float

loads from global memory for 256 * (2*16) =

8,192 mul/add operations.

– Memory bandwidth no longer a limiting factor

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

CUDA Code – Kernel Execution

Configuration
// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row];

10. Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)];

11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[tx][k] * Nds[k][ty];

14. __synchthreads();

15.}

16. Pd[Row*Width+Col] = Pvalue;

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H
T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Each block computes one

square sub-matrix Pdsub of size
TILE_WIDTH

• Each thread computes one

element of Pdsub

m

kbx

by

k

m

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Shared Memory and Threading

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

• Each SM in Fermi has 64KB on-chip SRAM, partitioned

into 48KB L1 cache and 16KB shared memory, or vice

versa

– SM size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB

of shared memory.

– Can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256

threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB

shared memory usage per thread block, allowing 2 or 6 thread

blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global

memory by a factor of 16

– A 150GB/s bandwidth can now support (150/4)*16 = 600

GFLOPS!

More Difficult Blocking/Tiling Cases

• Some applications do not access input data in a

uniform way

– Convolution

– PDE solvers

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

STENCIL CODE EXAMPLE

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Stencil Computation

• Describes the class of nearest neighbour

computations on structured grids.

• Each point in the grid is a weighted linear

combination of a subset of neighbouring values.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Overview

• Application: 7-pt Stencil Computation/ Stencil

Probe.

• Optimizations and concepts covered : Improving

locality and Data Reuse

– 2D Tiling in Shared Memory

– Register Tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Stencil Computation

• High parallelism: Conceptually, all points in the

grid can be updated in parallel.

• Each computation performs a global sweep

through the data structure.

• Low computational intensity: High memory traffic

for very few computations.

• Challenge: Exploit parallelism without overusing

memory bandwidth

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Implementation Details

• General Equation:

• Separate read and write arrays.

• Mapping of arrays from 3D space to linear array

space.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Naïve implementation

• Each thread calculates a one-element thin

column along the z-dimension

– Each block computes a rectangular column along the

z-dimension

• Each thread loads its input elements from global

memory, independently of other threads

– High read redundancy, heavy global memory traffic

• Optimization – each thread can reuse data along

the z-dimension

– The current center input becomes the bottom input

– The current top input becomes the center input
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Sample Naïve Kernel Code

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Memory Loads in the Naïve Kernel

• Assume no data reuse along the z-direction

within each thread,

– A thread loads 7 input elements for each output

element.

• With data reuse within each thread,

– A thread loads 5 input elements for each output

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Data Reuse

• Each internal point is

used to calculate

seven output values

– self, 4 planar

neighbors, top and

bottom neighbors

• Surface, edge, and

corner points are used

for fewer output

values

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Improving Locality: 2D Tiling

• Assume that all threads of a block march up the

z-direction in synchronized phases

• In each phase, all threads calculate a 2-D slide of

the rectangular output column

• For each phase, maintain three slices of relevant

input data in the on-chip memories

– One top and one bottom element in each thread’s

private registers

– All current elements also in shared memory

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Improving Locality: 2D Tiling (cont.)

• From one phase to next, the kernel code

– Moves current element to register for lower element

– Moves top element from top register to current register

and shared memory

– Load new top element from Global Memory to register

• Need to load halo data as well

– Needed to calculate edge elements

of the column

– For each 3D nxmxp output block to

be computed, we need to load

(n+2)x(m+2)x(p+2) inputs..
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Halo overhead can hurt.

• For small n and m, the halo overhead can be

very significant

– If n=16 and m = 8, each slice calculates 16*8=128

output elements in each slice and needs to load

18*10=180 input elements

– In optimized naive code, each output element needs 5

loads from global memory, a total of 5*128=640 loads

– The total ratio of improvement is 640/180 = 3.5, rather

than 5 times

– The value of n and m are limited by the amount of

registers and shared memory in each SM

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

CONVOLUTION EXAMPLE

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Convolution

• A convolution kernel is used to change an input

element to the weighed linear combination of its

neighbors.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Thread 1 Thread 2 …

in

out

Example: Convolution – Base Parallel

Code

• Each parallel task calculates an output element

• Figure shows

– 1D convolution with K=5 kernel

– Calculation of 3 output elements

• Highly parallel but memory bandwidth inefficient

– Uses massive threading to tolerate memory latency

– Each input element loaded up to K timesInput elements in

main memory

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Example: convolution using on-chip caching

• Output elements calculated from cache contents

– Each input element loaded only once

– Cache pressure – (K-1+N) input elements needed for

N output elements

• 7/3 = 2.3, 72/32 = 5.4, 73 / 33 = 12

• For small caches, the benefit can be significantly reduced due

to the high-ratio of additional elements loaded.

Input elements first

loaded into cache

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Tiling for convolution is both easy

and hard

• Convolution is conceptually easy to block

– All threads that calculate a tile of output can share a

tile of input

• High-performance tiling can be hard to achieve

– Larger convolution kernels increase data sharing but

also increase halo overhead

– Many 3D convolution kernels cannot be done by

traversing along the z-dimension sequentially

– Higher-dimension convolution quickly run out of on-

chip memory space

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

