
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

VSCSE Summer School

Proven Algorithmic Techniques for

Many-core Processors

Lecture 7: Dealing with

Non-Uniform Data

MRI Reconstruction

 MRI scanners
increasingly use spiral
trajectories in a
cylindrical or spherical
coordinate system

⟹ The image cannot be
reconstructed by
directly applying IFFT to
the k-space samples

 Transform MR data samples from the k-space
into the image space using IFFT

2

Gridding to Enable IFFT

 Instead, map non-Cartesian samples in frequency
domain onto a 3D Cartesian grid based on a Kaiser-
Bessel function (Gridding)

 Next, perform IFFT on grid to transform it to the image
domain

3

Large Number of Sample Points

• Each sample contains

– Its K-space Coordinates, s.coordinates

– Its strength value, s.value

• Given s.coordinates, it is easy to calculate the

range of grid points affected

– Cutoff distance

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

An Input Oriented Sequential Code

 Uses a window function

for (every sample point s){

for(z in range){

for(y in range){

for(x in range){

weight = kaiser_bessel(|<s.coords>-<x,y,z>|)

grid[z][y][x] += s.value * weight;

}

}

}

}

distance cutoff beyond :Zero

distance cutoff some within:f(input)
output

5

Binning of Sample Points

• For simplicity, we will use 1D gridding examples

• Each sample point has

– s.x (will be represented with Bin#)

– S.value (will be omitted unless necessary)

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 1 32 4 5

Bin 1Bin 0 Bin 2 Bin 3 Bin 4

cutoff distance

A Scatter Parallelization

• Use each thread to process N sample points

• Use Global Memory atomic operation to

accumulate into grid points
• Each sample point affects all grid points with cutoff distance

• Slow, but not pathologically slow
• Fermi runs this faster than its predecessors

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 1 0 0 2 13 4

543210 76

cutoff distance

A Faster Scatter Implementation

• Algorithm:

– Sort input data

– Each block processes one
section of sample points

• Each thread processes a
smaller section of sample
points

– Create window of grid
points in shared memory
and compute into it when
possible

• Quick inspection of the end
sample points of sample
section determines window

– Use atomic operation to
coordinate across threads

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 0 0 1 1 32 4

0 21 43 50 21 3

Shared Memory Shared Memory

Regularization helps scatter too.

Limited Space in Shared Memory

• The sample sections vary in
the span of grid points they
cover

– The algorithms works best in
sample points are mostly
concentrated in small grid regions

• Limit the size of grid point
window for Share Memory
limitation and copy-merge
overhead

• Moderate level of contention

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 0 0 1 1 32 4

0 21 43 50 21 3

Shared Memory Shared Memory

Accesses to Global Memory

• A condition test of bin value
and widow span determines if
an affected grid point is in
Shared Memory window

– Use atomic operation to
accumulate into Global Memory

– low contention

• At the end of block execution,
thread collectively merge
window back to Global Memory

– Use atomic operation

– Moderate to low contention

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 0 0 1 1 32 4

0 21 43 50 21 3

Shared Memory Shared Memory

4 50 21 3 6 7

How about Scatter Parallelization

• No contention

• We know we can bin

sample points

• However, there can

be great load

imbalance

– Some grid points are

affected by many more

sample points than

others

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

A Binned Gather Parallelization

• Use each thread to

compute the value of

N grid points

• Pre-sort sample

points into fixed size

bins

• Each thread reads

only the relevant input

bins
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 0 0 1 1 2X X

0 21 63 74 5

Shared Memory

X 3 X X 4 X X

A Tiled Gather Implementation

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

k

0 21 63 74 5

Shared Memory

Shared Memory

0 1 2

0 1 X

0 X X

3

X

X

4

X

X

5

X

X

2 3 4

X X X

X X X

X

X

X

X

X

X

7

X

X

Shared Memory

X

X

X

9

X

X

More on Tiled Gather

• Threads cooperate to load the relevant bins for

all of them from Global Memory to Shared

Memory

• Each thread only access relevant bins from

Shared Memory

• Uniform binning for Non-uniform distribution

– Large memory overhead for dummy cells

– Reduced benefit of tiling

– Many threads spend much time on dummy sample

points

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Bin 4

Implicit Binning for Gather

Parallelization

 Don’t use pre-allocated fixed size bins (multi-
dimensional array)

 Sort samples into bins of varying sizes in input
array instead

 Bins 5, 6, 8 are implicit, zero-sample

15

0 0 0 1 1 32 4

0 1 0 0 2 13 4

sort

Bin 0 Bin 2Bin 1 Bin 3

9 7

7 9
Bin 7 Bin 9

Determine Start and End of Bins

• Use parallel scan operations to generate an

array of starting points of all bins (CUDPP)

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 0 0 1 1 32 4

Bin 0 Bin 2Bin 1 Bin 3Bin 4

0 3 3 5 6 7 7

7 9

0 1 2 3 4 5 76 8 9

7 8 8 9

A Tiled Gather Implementation

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

k

0 21 63 74 5

Shared Memory

Shared Memory

0 0 0 1 1 2 2 3 4 7 9

Shared Memory

3 4

Controlling Load Balance

• Limit the size of each bin

– Both uniform and variable/implicit bins

– CPU places excess sample points into a CPU list

– CPU does gridding on the excess sample points in

parallel with GPU

– Eventually merge

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

0 1 2 3 4 97 0 0 1

GPU CPU

19

Determining the bin-size limit can

be tricky.

• Higher limit creates more load imbalance on GPU

• Lower limit may cause too much CPU execution time

• What is the best bin size?

Sort-reduce

…

CPU CPU

GPU

20

There is a range of good bin sizes

for each processor.

21

Performance Chart

• Partitioning achieves 43% speedup over sort-

reduce without partitioning

Algorithm Time (sec.) Speedup

Sequential 23.44 1X

Shared Atomic 15.4 1.52X

Sort-Reduce 14.25 1.64X

Sort-Reduce + Partitioning
(binsize limit=128)

9.92 2.36X

22

Determining Appropriate Algorithm

The Answer is depends.

No panacea here: best algorithm and optimal bin
size depend on input data distribution!

ANY FURTHER QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

