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MRI Reconstruction

 MRI scanners 
increasingly use spiral 
trajectories in a 
cylindrical or spherical
coordinate system

⟹ The image cannot be 
reconstructed by 
directly applying IFFT to 
the k-space samples

 Transform MR data samples from the k-space 
into the image space using IFFT 
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Gridding to Enable IFFT

 Instead, map non-Cartesian samples in frequency 
domain onto a 3D Cartesian grid based on a Kaiser-
Bessel function (Gridding)

 Next, perform IFFT on grid to transform it to the image 
domain

3



Large Number of Sample Points

• Each sample contains

– Its K-space Coordinates, s.coordinates 

– Its strength value, s.value

• Given s.coordinates, it is easy to calculate the 

range of grid points affected 

– Cutoff distance
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An Input Oriented Sequential Code

 Uses a window function

for (every sample point s){

for(z in range){

for(y in range){

for(x in range){

weight = kaiser_bessel(|<s.coords>-<x,y,z>|)

grid[z][y][x] += s.value * weight;

}

}

}

}

distance cutoff beyond :Zero

distance cutoff some  within:f(input)
output
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Binning of Sample Points

• For simplicity, we will use 1D gridding examples

• Each sample point has

– s.x (will be represented with Bin#)

– S.value (will be omitted unless necessary)
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A Scatter Parallelization

• Use each thread to process N sample points

• Use Global Memory atomic operation to 

accumulate into grid points
• Each sample point affects all grid points with cutoff distance

• Slow, but not pathologically slow
• Fermi runs this faster than its predecessors 
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A Faster Scatter Implementation 

• Algorithm:

– Sort input data

– Each block processes one 
section of sample points

• Each thread processes a 
smaller section of sample 
points

– Create window of grid 
points in shared memory 
and compute into it when 
possible

• Quick inspection of the end 
sample points of sample 
section determines window

– Use atomic operation to 
coordinate across threads
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Limited Space in Shared Memory

• The sample sections vary in 
the span of grid points they 
cover

– The algorithms works best in 
sample points are mostly 
concentrated in small grid regions

• Limit the size of grid point 
window for Share Memory 
limitation and copy-merge 
overhead

• Moderate level of contention
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Accesses to Global Memory

• A condition test of bin value 
and widow span determines if 
an affected grid point is in 
Shared Memory window

– Use atomic operation to 
accumulate into Global Memory 

– low contention

• At the end of block execution, 
thread collectively merge 
window back to Global Memory

– Use atomic operation 

– Moderate to low contention
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How about Scatter Parallelization

• No contention

• We know we can bin 

sample points

• However, there can 

be great load 

imbalance

– Some grid points are 

affected by many more 

sample points than 

others 
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A Binned Gather Parallelization

• Use each thread to 

compute the value of 

N grid points

• Pre-sort sample 

points into fixed size 

bins

• Each thread reads 

only the relevant input 

bins
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A Tiled Gather Implementation
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More on Tiled Gather

• Threads cooperate to load the relevant bins for 

all of them from Global Memory to Shared 

Memory

• Each thread only access relevant bins from 

Shared Memory

• Uniform binning for Non-uniform distribution

– Large memory overhead for dummy cells

– Reduced benefit of tiling

– Many threads spend much time on dummy sample 

points
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Bin 4

Implicit Binning for Gather 

Parallelization 

 Don’t use pre-allocated fixed size bins (multi-
dimensional array)

 Sort samples into bins of varying sizes in input 
array instead

 Bins 5, 6, 8 are implicit, zero-sample
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Determine Start and End of Bins

• Use parallel scan operations to generate an 

array of starting points of all bins (CUDPP)
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A Tiled Gather Implementation
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Controlling Load Balance

• Limit the size of each bin

– Both uniform and variable/implicit bins

– CPU places excess sample points into a CPU list 

– CPU does gridding on the excess sample points in 

parallel with GPU

– Eventually merge
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Determining the bin-size limit can 

be tricky.

• Higher limit creates more load imbalance on GPU

• Lower limit may cause too much CPU execution time

• What is the best bin size?

Sort-reduce

…

CPU CPU

GPU
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There is a range of good bin sizes 

for each processor.
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Performance Chart

• Partitioning achieves 43% speedup over sort-

reduce without partitioning

Algorithm Time (sec.) Speedup

Sequential 23.44 1X

Shared Atomic 15.4 1.52X

Sort-Reduce 14.25 1.64X

Sort-Reduce + Partitioning
(binsize limit=128)

9.92 2.36X
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Determining Appropriate Algorithm



The Answer is depends.

No panacea here: best algorithm and optimal bin
size depend on input data distribution!



ANY FURTHER QUESTIONS?
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