VSCSE Summer School

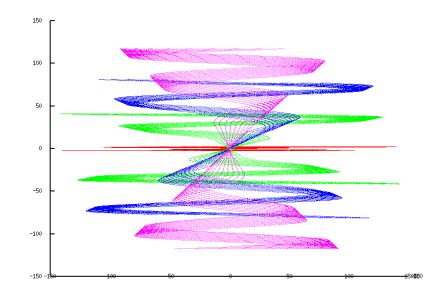
Proven Algorithmic Techniques for Many-core Processors

Lecture 7: Dealing with Non-Uniform Data

MRI Reconstruction

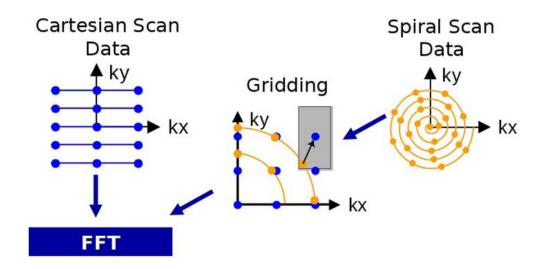
- Transform MR data samples from the k-space into the image space using IFFT
- MRI scanners increasingly use spiral trajectories in a cylindrical or spherical coordinate system

⇒ The image cannot be reconstructed by directly applying IFFT to the k-space samples



Gridding to Enable IFFT

- Instead, map non-Cartesian samples in frequency domain onto a 3D Cartesian grid based on a Kaiser-Bessel function (Gridding)
- Next, perform IFFT on grid to transform it to the image domain



Large Number of Sample Points

- Each sample contains
 - Its K-space Coordinates, s.coordinates
 - Its strength value, s.value
- Given s.coordinates, it is easy to calculate the range of grid points affected
 - Cutoff distance

An Input Oriented Sequential Code

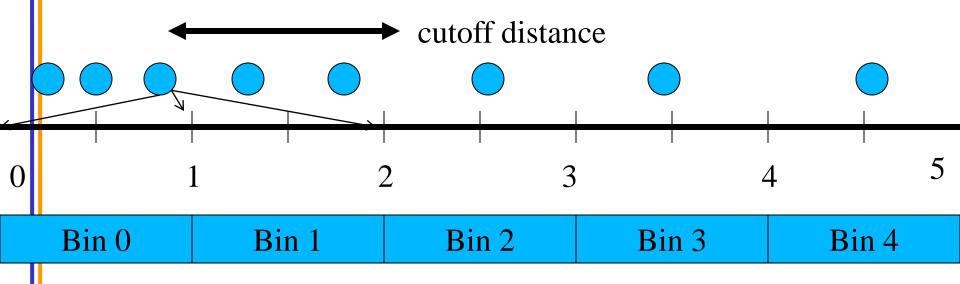
Uses a window function

 $output = \begin{cases} \frac{f(\text{input}) : \text{within some cutoff distance}}{\text{Zero} : \text{beyond cutoff distance}} \end{cases}$

```
for (every sample point s) {
    for(z in range) {
        for(y in range) {
            for(x in range) {
                weight = kaiser_bessel(|<s.coords>-<x,y,z>|)
                grid[z][y][x] += s.value * weight;
            }
        }
    }
}
```

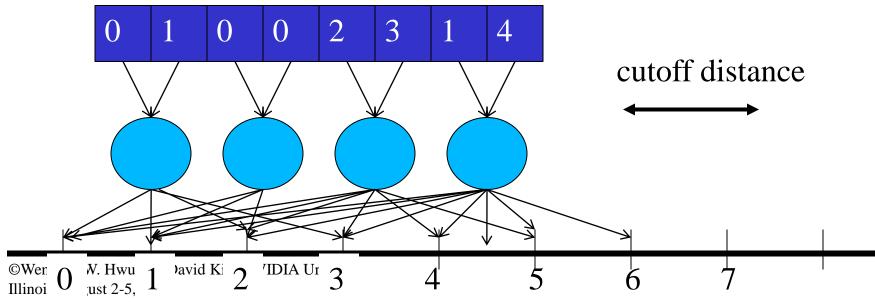
Binning of Sample Points

- For simplicity, we will use 1D gridding examples
- · Each sample point has
 - s.x (will be represented with Bin#)
 - S.value (will be omitted unless necessary)



A Scatter Parallelization

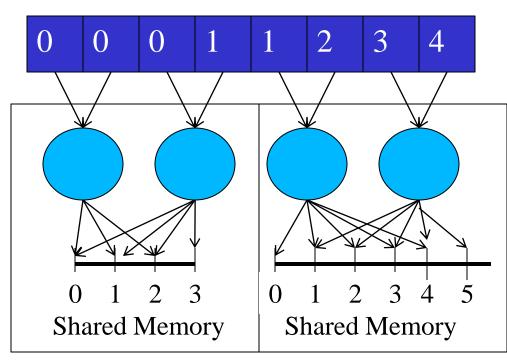
- Use each thread to process N sample points
- Use Global Memory atomic operation to accumulate into grid points
 - Each sample point affects all grid points with cutoff distance
- Slow, but not pathologically slow
 - Fermi runs this faster than its predecessors



A Faster Scatter Implementation

- Algorithm:
 - Sort input data
 - Each block processes one section of sample points
 - Each thread processes a smaller section of sample points
 - Create window of grid points in shared memory and compute into it when possible
 - Quick inspection of the end sample points of sample section determines window
 - Use atomic operation to coordinate across threads

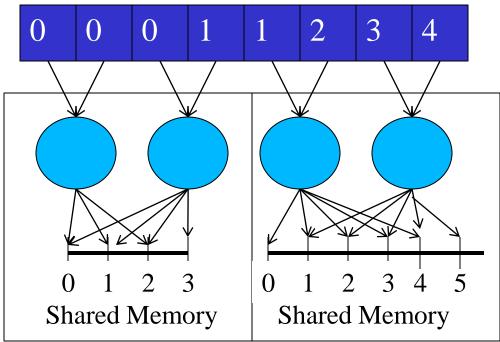
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, Illinois, August 2-5, 2010



Regularization helps scatter too.

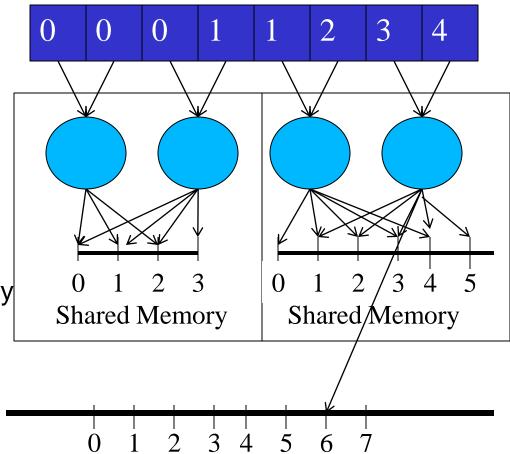
Limited Space in Shared Memory

- The sample sections vary in the span of grid points they cover
 - The algorithms works best in sample points are mostly concentrated in small grid regions
- Limit the size of grid point window for Share Memory limitation and copy-merge overhead
- Moderate level of contention



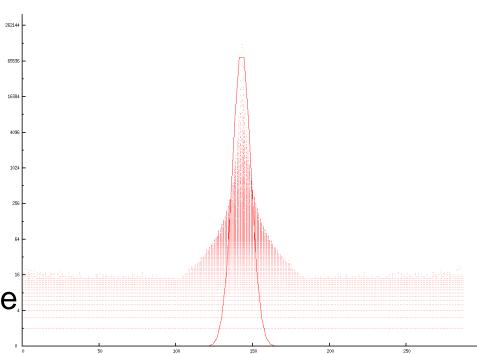
Accesses to Global Memory

- A condition test of bin value and widow span determines if an affected grid point is in Shared Memory window
 - Use atomic operation to accumulate into Global Memory
 - low contention
- At the end of block execution, thread collectively merge window back to Global Memory
 - Use atomic operation
 - Moderate to low contention

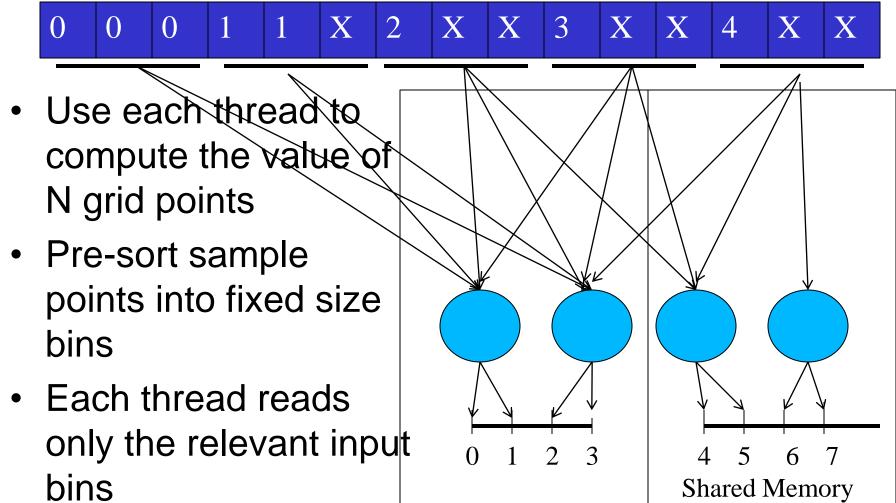


How about Scatter Parallelization

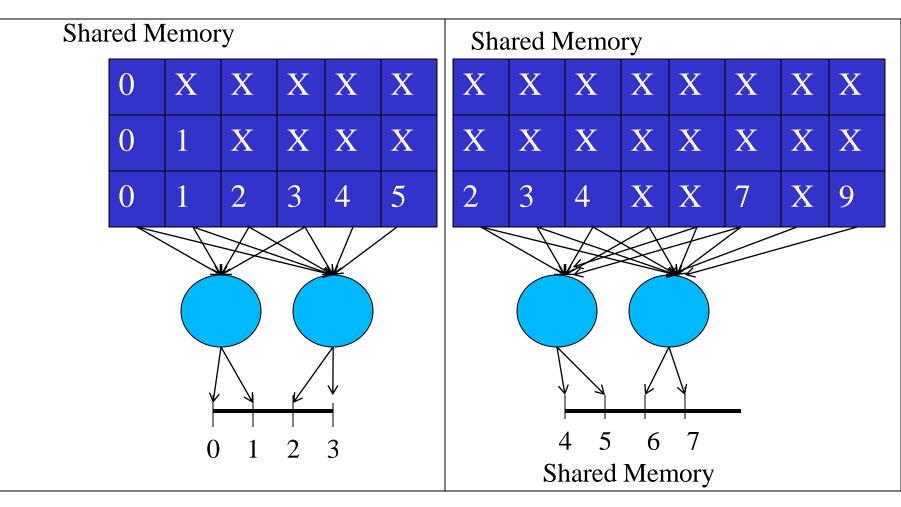
- No contention
- We know we can bin sample points
- However, there can be great load imbalance
 - Some grid points are affected by many more sample points than others



A Binned Gather Parallelization



A Tiled Gather Implementation

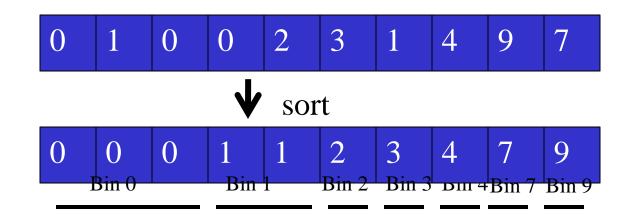


More on Tiled Gather

- Threads cooperate to load the relevant bins for all of them from Global Memory to Shared Memory
- Each thread only access relevant bins from Shared Memory
- Uniform binning for Non-uniform distribution
 - Large memory overhead for dummy cells
 - Reduced benefit of tiling
 - Many threads spend much time on dummy sample points

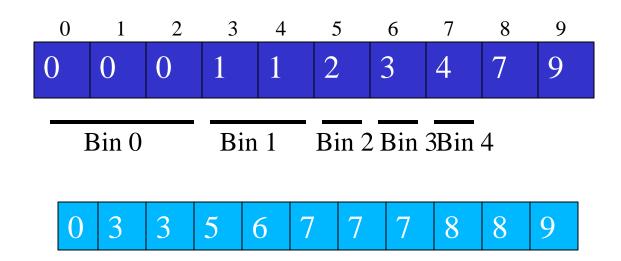
Implicit Binning for Gather Parallelization

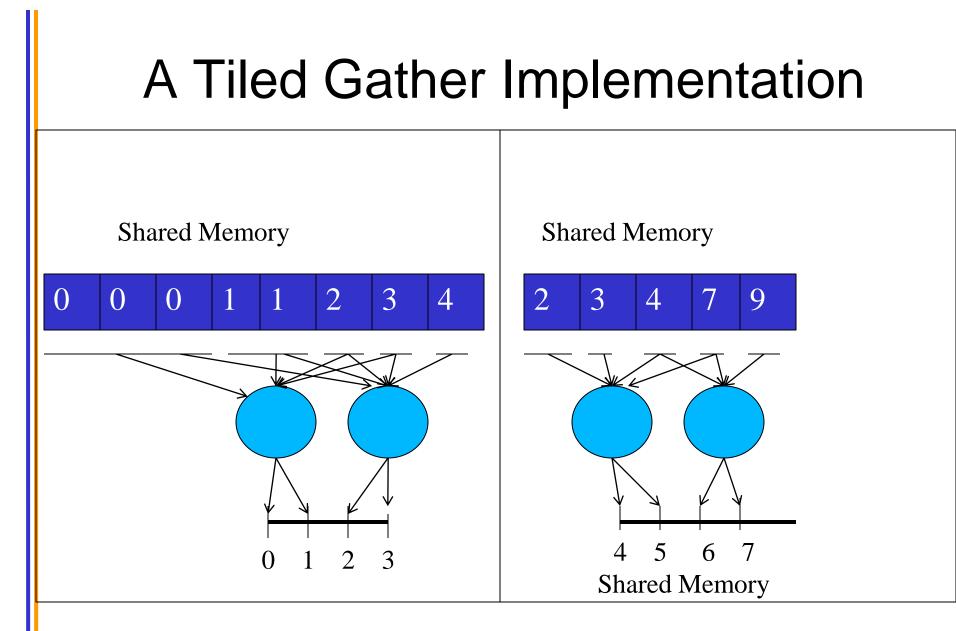
- Don't use pre-allocated fixed size bins (multidimensional array)
- Sort samples into bins of varying sizes in input array instead
 - Bins 5, 6, 8 are implicit, zero-sample



Determine Start and End of Bins

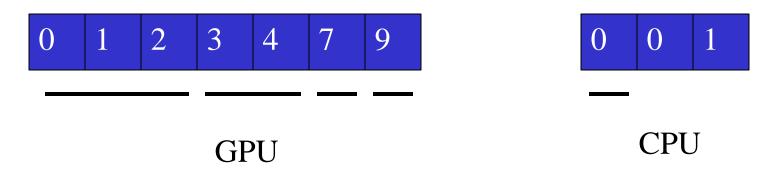
• Use parallel scan operations to generate an array of starting points of all bins (CUDPP)

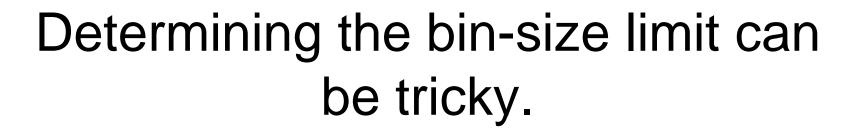


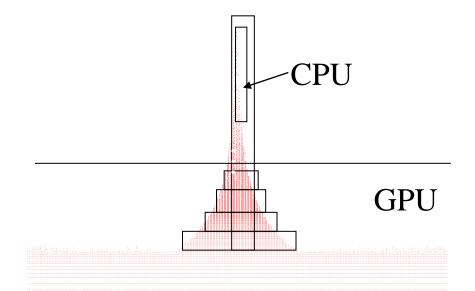


Controlling Load Balance

- Limit the size of each bin
 - Both uniform and variable/implicit bins
 - CPU places excess sample points into a CPU list
 - CPU does gridding on the excess sample points in parallel with GPU
 - Eventually merge

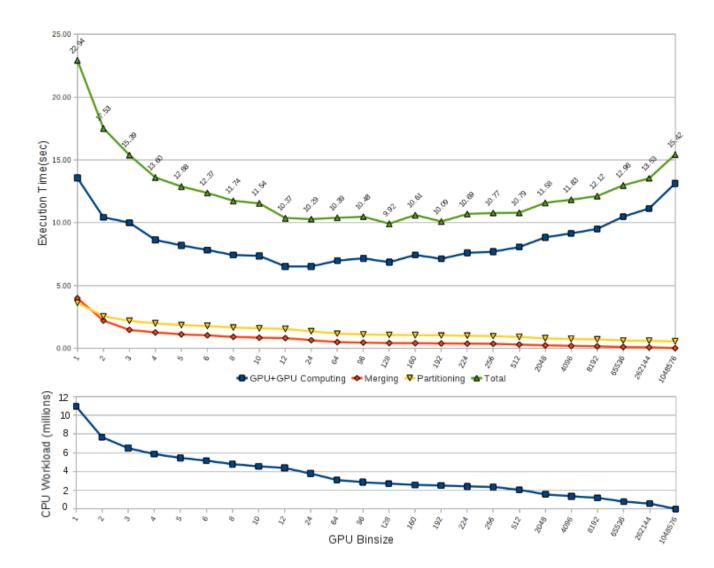






- Higher limit creates more load imbalance on GPU
- Lower limit may cause too much CPU execution time
- What is the best bin size?

There is a range of good bin sizes for each processor.



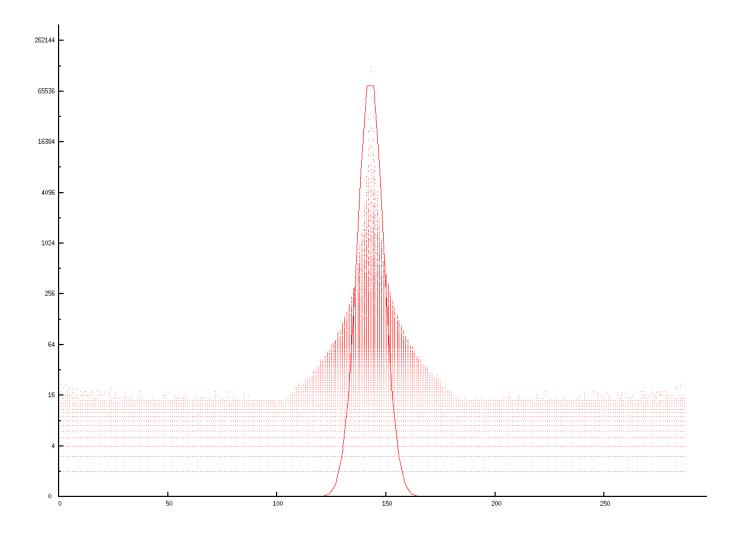
20

Performance Chart

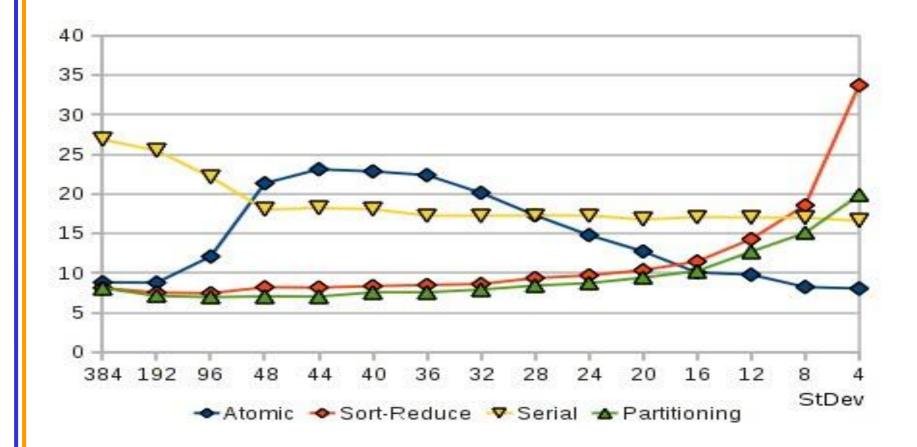
• Partitioning achieves 43% speedup over sortreduce without partitioning

Algorithm	Time (sec.)	Speedup
Sequential	23.44	1X
Shared Atomic	15.4	1.52X
Sort-Reduce	14.25	1.64X
Sort-Reduce + Partitioning (binsize limit=128)	9.92	2.36X

Determining Appropriate Algorithm



The Answer is depends.



ANY FURTHER QUESTIONS?