VSCSE Summer School

Proven Algorithmic Techniques for
Many-core Processors

Lecture 8: Dealing with
Dynamic Data

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Dynamic Data

* The data to be processed in each phase of
computation need to be dynamically determined
and extracted from a bulk data structure

— Harder when the bulk data structure is not organized
for massively parallel access, such as graphs.

« Graph algorithms are popular examples that deal
with dynamic data

— Widely used in EDA and large scale optimization
applications

— We will use Breadth-First Search (BFS) as an
example

Main Challenges of Dynamic Data

* |Input data need to be organized for locality,
coalescing, and contention avoidance as they

are extracted during execution

* The amount of work and level of parallelism often
grow and shrink during execution
— As more or less data Is extracted during each phase
— Hard to efficiently fit into one CUDA kernel
configuration, which cannot be changed once
launched
— Different kernel strategies fit different data sizes

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Breadth-First Search (BFS)

Level 1

— — A Level 2
t Qé L—y Z
?— _T Level 3
v %y 4 Frontier vertex
?_ f_f ® Visited vertex Level 4
X

Sequential BFS

« Store the frontier in a queue
« Complexity (O(V+E))

/\o
Z / Dequeue Enqueue

Parallelism in BFS

« Parallel Propagation in each level
* One GPU kernel per level

Level 1 A Example kernel

Level 2 Parallel

eve ! ﬂ v f R Kernel 3
z ol global barrier

Level 3 aratie z ; Kernel 4

L ovel 4 z ; Parallel

BFS in VLSI CAD

 Maze Routing

@ netterminal
Bl blockage

BFS in VLSI CAD

* Logic Simulation/Timing Analysis

| J__LT [] T J__LT || TJ__LTJ__L :
X
[~
\
1
T
(LLW
\T /

BFS in VLSI CAD

n formal verification for reachabiliy analysis.
n clustering for finding connected components.
n logic synthesis

Potential Pitfall of Parallel
Algorithms

« Greatly accelerated n? algorithm is still slower
than an nlogn algorithm.

* Always need to keep an eye on fast sequential
algorithm as the baseline.

x105|

— f(n) = n%/1000
..... g(n) = nlog,(n)

—
o
T

awl] Buluuny

=

-
-7

5000 15000 25000 35000

Node Oriented Parallelization

e IIT-BFS

— P. Harish et. al. “Accelerating large graph algorithms on the GPU
using CUDA”

— Each thread is dedicated to one node

— Every thread examines neighbor nodes to determine if its node
will be a frontier node in the next phase

— Complexity O(VL+E) (Compared with O(V+E))

— Slower than the sequential version for large graphs
» Especially for sparsely connect graphs

U e—

Matrix-based Parallelization

Yangdong Deng et. al. “Taming Irregular EDA
applications on GPUs”

Propagation is done through matrix-vector
multiplication

— For sparsely connected graphs, the connectivity matrix
will be a sparse matrix

Complexity O(V+EL) (compared with O(V+E))
— Slower than sequential for large graphs

S >
u
V/J v

0 1 0]
1 01

010
S U Vv

1
0
0

0
1
0

S

SN
u
./

Need a More General Technique

« To efficiently handle most graph types

* Use more specialized formulation when
appropriate as an optimization

 Efficient queue-based parallel algorithms

— Hierarchical scalable queue implementation
— Hierarchical kernel arrangements

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

An Initial Attempt

° Manage the gueue structure
— Complexity: O(V+E)
— Dequeue in parallel ©
— Each frontier node is a thread

— Enqueue in sequence.
» Poor coalescing
« Poor scalability T . Parallel

— No speedup

X

\
wlyl [T

Parallel Insert-Compact Queues

 C.Lauterbach et.al."Fast BVH Construction on
GPUSs”

« Parallel enqueue with compaction cost
* Not suitable for light-node problems

1)

Propagate

Compact

Basic ideas

« Each thread processes one or more frontier
nodes

* Find the index of each new frontier node
« Build gueue of next frentier hierarchically

Local [@BIEI T L[]

Global

Two-level Hierarchy

* Block queue (b-queue)

— Inserted by all threads in a
block

Shared Mem

— Reside in Shared Memory

* Global queue (g-queue)
— Inserted only when a block

completes

* Problem:
— Collision on b-queues

g-queue

Global Mem

— Threads in the same block
can cause heavy contention

Warp-level Queue
Thread Scheduling

Wari i Wari i

> Time

Divide threads into 8 groups (for GTX280)

— Number of SP’s in each SM in general
— One queue to be written by each SP in the SM

Each group writes to one warp-level queue

Still should use atomic operation
— But much lower level of contention

Three-level hierarchy

g-gqueue

Hierarchical Queue Management

e Shared Memory:

— Interleaved queue layout, no bank conflict

W-queues[][8]

* Global Memory:
— Coalescing when releasing a b-queue to g-queue
— Moderate contention across blocks

* Texture memory :
— Store graph structure (random access, no coalescing)
— Fermi cache may help.

Hierarchical Queue Management

« Advantage and limitation

— The technique can be applied to any inherently
sequential data structure

— The w-queues and b-queues are limited by the
capacity of shared memory. If we know the upper limit
of the degree, we can adjust the number of threads
per block accordingly.

Kernel Arrangement

* To create global barriers needs
frequent kernel launches

Kernel call
b & * Too much overhead
e Solution:
Kernel call _ | |
5 6 @ — Partially use GPU-synchronization
— Three-layer Kernel Arrangement
Kernel call

u y

Hierarchical Kernel Arrangement

« Customize kernels based on the size of frontiers.

« Use GPU synchronization when the frontier is
small.

One-level parallel propagatior
Kernel 1: Intra-block Sync.

—

Kernel 2: Inter-block Sync.

Kernel 3: Kernel re-
launch

Kernel Arrangement

Kernel 1: small-sized frontiers
— Only launch one block
— Use CUDA barrier function

— Propagate through multiple
levels

— Save global memory
access

Level i

Level i+1

Level i+2

Work Threads)

Dummy Threads

««««««««««««««

rrrrrrrrrrr

\\\\\\\\\\\\

' |
[P
(NN
T T T T U N N N O N N I A
[
""”””“”l

b-queue

«««««««

B

b-queue

Rt

Kernel Arrangement

« Kernel 2: mid-sized frontiers
— Launch m blocks (m = #SM)
— Each block is assigned to one SM and stays active
— Use global memory to implement inter-block synchronization

— Global synch across blocks is allowed in CUDA when all there is
only one block per SM

— Propagate through multiple levels
« Kernel 3: big-sized frontiers

— Use kernel re-launch to implement synchronization

— The kernel launch overhead is acceptable considering the time to
propagate a huge frontier

Kernel Arrangement for GTX280

Kernel 1: Intra-block Sync.
<512 nodes

Kernel 2: Inter-block Sync.
< 15360 (30*512)

Kernel 3: kernel terminatior

Assumption: #SM = 30 Sync.
#Thread/block = 512 > 15360

Experimental setup

 CPU implementation
— The classical BFS algorithm (O(V+E))

— dual socket dual core 2.4 Ghz Opteron processor with
8GB memory.

 GPU: NVIDIA GeForce GTX280

 Benchmarks
— Near-regular graphs (degree = 6)
— Real world graphs (avg. degree = 2, max degree = 9)
— Scale free graphs

* 0.1% of the vertices: degree = 1000
« The remaining vertices: degree = 6

Results on near-regular graphs

#Vertex IHIT-BFS CPU-BFS | UIUC-BFS | Speedup

(M) (ms) (ms) (ms) (CPU/UIUC)

1 462.8 146.7 67.8 2.2

2 1129.2 311.8 121.0 2.6

5 4092.2 1402.2 266.0 5.3

7 6597.5 2831.4 509.5 5.6

9 9170.1 4388.3 449.3 0.8

10 11019.8 5023.0 488.0 10.3

Results on real-world graphs

#Vertex IIT-BFS CPU-BFS | UIUC-BFS | Speedup
(ms) (ms) (ms) (CPU/UIUC)
264,346 79.9 41.6 19.4 2.1
1,070,376 372.0 120.7 61.7 2.0
3,598,623 1471.1 581.4 158.5 3.7
6,262,104 2579.4 1323.0 236.6 5.6

Results on scale-free graphs

#Vertex (M) IIT-BFS (ms) | CPU-BFS (ms) | UIUC-BFS (ms)
1 161.5 52.8 100.7

5 1015.4 284.0 302.0

10 2252.8 506.9 483.6

« Parallelism on the imbalanced problems does
not work as well as of today.

Concluding Remarks

« Effectively accelerated BFS, considering the upper limit
of such memory-bound applications
— Still need to address non-uniform data distribution

» Hierarchical queue management and multi-layer kernel
arrangement are potentially applicable to other types of
algorithms with dynamic data (work)

* To fully exploit the power of GPU computation, we need
more efforts at the data structure and algorithmic level.

References

Lijuan Luo, Martin Wong, Wen-mei Hwu, “An effective GPU implementation of
breadth-first search”, accepted by Design Automation Conference, 2010.

Pawan Harish and P. J. Narayanan, "Accelerating large graph algorithms on the
GPU using CUDA", in IEEE High Performance Computing, 2007. LNCS 4873, pp
197-208.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha, “Fast BVH
Construction on GPUs”, Computer Graphics Forum, Vol. 28, No. 2., pp. 375-384.

Yangdong(Steve) Deng, Bo David Wang and Shuai Mu, "Taming Irregular EDA
Applications on GPUs", ICCAD'09, page 539-546, 2009.

Shucai Xiao and Wu-chun Feng, "Inter-Block GPU Communication via Fast Barrier
Synchronization", Technical Report TR-09-19, Computer Science, Virginia Tech.

ANY FURTHER QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

