
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

VSCSE Summer School

Proven Algorithmic Techniques for

Many-core Processors

Lecture 8: Dealing with

Dynamic Data

Dynamic Data

• The data to be processed in each phase of

computation need to be dynamically determined

and extracted from a bulk data structure

– Harder when the bulk data structure is not organized

for massively parallel access, such as graphs.

• Graph algorithms are popular examples that deal

with dynamic data

– Widely used in EDA and large scale optimization

applications

– We will use Breadth-First Search (BFS) as an

example

Main Challenges of Dynamic Data

• Input data need to be organized for locality,

coalescing, and contention avoidance as they

are extracted during execution

• The amount of work and level of parallelism often

grow and shrink during execution

– As more or less data is extracted during each phase

– Hard to efficiently fit into one CUDA kernel

configuration, which cannot be changed once

launched

– Different kernel strategies fit different data sizes
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

Breadth-First Search (BFS)

sr t u

v w x y

sr t u

v w x y

sr t u

v w x y

sr t u

v w x y

s

r w

v t x

u y

Frontier vertex

Level 1

Level 2

Level 3

Level 4Visited vertex

Sequential BFS

• Store the frontier in a queue

• Complexity (O(V+E))

s

r w

v t x

u y

Level 1

Level 2

Level 3

Level 4

sr tv xywu
Dequeue Enqueue

Parallelism in BFS

• Parallel Propagation in each level

• One GPU kernel per level

s

r w

v t x

u y

Parallel

Parallel

v t x

u y

Level 1

Level 2

Level 3

Level 4

Kernel 3

Example kernel

Kernel 4

Parallel

global barrier

BFS in VLSI CAD

• Maze Routing

blockage

net terminal

BFS in VLSI CAD

• Logic Simulation/Timing Analysis

0

0

0

0

0

0

0 1

BFS in VLSI CAD

• In formal verification for reachabiliy analysis.

• In clustering for finding connected components.

• In logic synthesis

• ……..

Potential Pitfall of Parallel

Algorithms
• Greatly accelerated n2 algorithm is still slower

than an nlogn algorithm.

• Always need to keep an eye on fast sequential
algorithm as the baseline.

R
u
n
n
in

g
 T

im
e

Problem Size

Node Oriented Parallelization

• IIIT-BFS
– P. Harish et. al. “Accelerating large graph algorithms on the GPU

using CUDA”

– Each thread is dedicated to one node

– Every thread examines neighbor nodes to determine if its node

will be a frontier node in the next phase

– Complexity O(VL+E) (Compared with O(V+E))

– Slower than the sequential version for large graphs

• Especially for sparsely connect graphs

r s t u v w x y

r s t u v w x y

v t x

u y

Matrix-based Parallelization

• Yangdong Deng et. al. “Taming Irregular EDA

applications on GPUs”

• Propagation is done through matrix-vector

multiplication

– For sparsely connected graphs, the connectivity matrix

will be a sparse matrix

• Complexity O(V+EL) (compared with O(V+E))

– Slower than sequential for large graphs

0

1

0

0

0

1

010

101

010s
u

v

s
u

v

s

u

v

s

u

v

s u v

Need a More General Technique

• To efficiently handle most graph types

• Use more specialized formulation when

appropriate as an optimization

• Efficient queue-based parallel algorithms

– Hierarchical scalable queue implementation

– Hierarchical kernel arrangements

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

An Initial Attempt

• Manage the queue structure
– Complexity: O(V+E)

– Dequeue in parallel

– Each frontier node is a thread

– Enqueue in sequence.

• Poor coalescing

• Poor scalability

– No speedup v t x

uy

u y

v t x

u y

Parallel

Sequential

Parallel Insert-Compact Queues

• C.Lauterbach et.al.“Fast BVH Construction on

GPUs”

• Parallel enqueue with compaction cost

• Not suitable for light-node problems

v t

y

x

uΦ Φ Φ Φ

u y
Compact

Propagate

v t x

u y

Basic ideas

• Each thread processes one or more frontier

nodes

• Find the index of each new frontier node

• Build queue of next frontier hierarchically

hLocal queues

Global queue

q1 q2 q3

Index = offset of q2 (#node in q1) + index in q2

a b c g i jLocal

Global h

Two-level Hierarchy

• Block queue (b-queue)

– Inserted by all threads in a

block

– Reside in Shared Memory

• Global queue (g-queue)

– Inserted only when a block

completes

• Problem:

– Collision on b-queues

– Threads in the same block

can cause heavy contention

g-queue

b-queue

Global Mem

Shared Mem

Warp-level Queue

Time

WiT7

WiT6

WiT0

WiT15

WiT14

WiT8

WiT23

WiT22

WiT16

WiT30

WiT29

WiT24

WjT7

WjT6

WjT0

WjT15

WjT14

WjT8

WjT23

WjT22

WjT16

WjT30

WjT29

WjT24

Warp i Warp j

• Thread Scheduling

• Divide threads into 8 groups (for GTX280)

– Number of SP’s in each SM in general

– One queue to be written by each SP in the SM

• Each group writes to one warp-level queue

• Still should use atomic operation

– But much lower level of contention

Three-level hierarchy

w-queue

b-queue

g-queue

b-queue

Hierarchical Queue Management

• Shared Memory:
– Interleaved queue layout, no bank conflict

• Global Memory:

– Coalescing when releasing a b-queue to g-queue

– Moderate contention across blocks

• Texture memory :

– Store graph structure (random access, no coalescing)

– Fermi cache may help.
W

-q
u
eu

e0

W
-q

u
eu

e1

W
-q

u
eu

e7

W-queues[][8]

Hierarchical Queue Management

• Advantage and limitation

– The technique can be applied to any inherently

sequential data structure

– The w-queues and b-queues are limited by the

capacity of shared memory. If we know the upper limit

of the degree, we can adjust the number of threads

per block accordingly.

Kernel Arrangement

• To create global barriers needs

frequent kernel launches

• Too much overhead

• Solution:

– Partially use GPU-synchronization

– Three-layer Kernel Arrangement

s

r w

v t x

u y

Kernel call

Kernel call

Kernel call

Hierarchical Kernel Arrangement

• Customize kernels based on the size of frontiers.

• Use GPU synchronization when the frontier is

small.

Kernel 1: Intra-block Sync.

Kernel 2: Inter-block Sync.

Kernel 3: Kernel re-

launch

One-level parallel propagation

Kernel Arrangement

• Kernel 1: small-sized frontiers

– Only launch one block

– Use CUDA barrier function

– Propagate through multiple

levels

– Save global memory

access

Work Threads Dummy Threads

b-queue

b-queue

Propagate

Level i

Level i+1

Level i+2

Kernel Arrangement

• Kernel 2: mid-sized frontiers

– Launch m blocks (m = #SM)

– Each block is assigned to one SM and stays active

– Use global memory to implement inter-block synchronization

– Global synch across blocks is allowed in CUDA when all there is

only one block per SM

– Propagate through multiple levels

• Kernel 3: big-sized frontiers

– Use kernel re-launch to implement synchronization

– The kernel launch overhead is acceptable considering the time to

propagate a huge frontier

Kernel Arrangement for GTX280

Kernel 1: Intra-block Sync.

≤ 512 nodes

Kernel 2: Inter-block Sync.

≤ 15360 (30*512)

Kernel 3: kernel termination

Sync.

> 15360
Assumption: #SM = 30

#Thread/block = 512

Experimental setup

• CPU implementation

– The classical BFS algorithm (O(V+E))

– dual socket dual core 2.4 Ghz Opteron processor with

8GB memory.

• GPU: NVIDIA GeForce GTX280

• Benchmarks

– Near-regular graphs (degree = 6)

– Real world graphs (avg. degree = 2, max degree = 9)

– Scale free graphs

• 0.1% of the vertices: degree = 1000

• The remaining vertices: degree = 6

Results on near-regular graphs
#Vertex

(M)

IIIT-BFS

(ms)

CPU-BFS

(ms)

UIUC-BFS

(ms)

Speedup

(CPU/UIUC)

1 462.8 146.7 67.8 2.2

2 1129.2 311.8 121.0 2.6

5 4092.2 1402.2 266.0 5.3

7 6597.5 2831.4 509.5 5.6

9 9170.1 4388.3 449.3 9.8

10 11019.8 5023.0 488.0 10.3

Results on real-world graphs
#Vertex IIIT-BFS

(ms)

CPU-BFS

(ms)

UIUC-BFS

(ms)

Speedup

(CPU/UIUC)

264,346 79.9 41.6 19.4 2.1

1,070,376 372.0 120.7 61.7 2.0

3,598,623 1471.1 581.4 158.5 3.7

6,262,104 2579.4 1323.0 236.6 5.6

Results on scale-free graphs

• Parallelism on the imbalanced problems does

not work as well as of today.

#Vertex (M) IIIT-BFS (ms) CPU-BFS (ms) UIUC-BFS (ms)

1 161.5 52.8 100.7

5 1015.4 284.0 302.0

10 2252.8 506.9 483.6

Concluding Remarks

• Effectively accelerated BFS, considering the upper limit

of such memory-bound applications

– Still need to address non-uniform data distribution

• Hierarchical queue management and multi-layer kernel

arrangement are potentially applicable to other types of

algorithms with dynamic data (work)

• To fully exploit the power of GPU computation, we need

more efforts at the data structure and algorithmic level.

References

• Lijuan Luo, Martin Wong, Wen-mei Hwu, “An effective GPU implementation of
breadth-first search”, accepted by Design Automation Conference, 2010.

• Pawan Harish and P. J. Narayanan, "Accelerating large graph algorithms on the
GPU using CUDA", in IEEE High Performance Computing, 2007. LNCS 4873, pp
197-208.

• C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha, “Fast BVH
Construction on GPUs”, Computer Graphics Forum, Vol. 28, No. 2., pp. 375-384.

• Yangdong(Steve) Deng, Bo David Wang and Shuai Mu, "Taming Irregular EDA
Applications on GPUs", ICCAD'09, page 539-546, 2009.

• Shucai Xiao and Wu-chun Feng, "Inter-Block GPU Communication via Fast Barrier
Synchronization", Technical Report TR-09-19, Computer Science, Virginia Tech.

ANY FURTHER QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

