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Dynamic Data

* The data to be processed in each phase of
computation need to be dynamically determined
and extracted from a bulk data structure

— Harder when the bulk data structure is not organized
for massively parallel access, such as graphs.

« Graph algorithms are popular examples that deal
with dynamic data

— Widely used in EDA and large scale optimization
applications

— We will use Breadth-First Search (BFS) as an
example



Main Challenges of Dynamic Data

* |Input data need to be organized for locality,
coalescing, and contention avoidance as they

are extracted during execution

* The amount of work and level of parallelism often
grow and shrink during execution
— As more or less data Is extracted during each phase
— Hard to efficiently fit into one CUDA kernel
configuration, which cannot be changed once
launched
— Different kernel strategies fit different data sizes
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Breadth-First Search (BFS)
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Sequential BFS

« Store the frontier in a queue
« Complexity (O(V+E))
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Parallelism in BFS

« Parallel Propagation in each level
* One GPU kernel per level
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BFS in VLSI CAD
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BFS in VLSI CAD

* Logic Simulation/Timing Analysis
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BFS in VLSI CAD

n formal verification for reachabiliy analysis.
n clustering for finding connected components.
n logic synthesis




Potential Pitfall of Parallel
Algorithms

« Greatly accelerated n? algorithm is still slower
than an nlogn algorithm.

* Always need to keep an eye on fast sequential
algorithm as the baseline.
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Node Oriented Parallelization

e IIT-BFS

— P. Harish et. al. “Accelerating large graph algorithms on the GPU
using CUDA”

— Each thread is dedicated to one node

— Every thread examines neighbor nodes to determine if its node
will be a frontier node in the next phase

— Complexity O(VL+E) (Compared with O(V+E))

— Slower than the sequential version for large graphs
» Especially for sparsely connect graphs
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Matrix-based Parallelization

Yangdong Deng et. al. “Taming Irregular EDA
applications on GPUs”

Propagation is done through matrix-vector
multiplication

— For sparsely connected graphs, the connectivity matrix
will be a sparse matrix

Complexity O(V+EL) (compared with O(V+E))
— Slower than sequential for large graphs
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Need a More General Technique

« To efficiently handle most graph types

* Use more specialized formulation when
appropriate as an optimization

 Efficient queue-based parallel algorithms

— Hierarchical scalable queue implementation
— Hierarchical kernel arrangements
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An Initial Attempt

° Manage the gueue structure
— Complexity: O(V+E)
— Dequeue in parallel ©
— Each frontier node is a thread

— Enqueue in sequence.
» Poor coalescing
« Poor scalability T . Parallel

— No speedup
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Parallel Insert-Compact Queues

 C.Lauterbach et.al."Fast BVH Construction on
GPUSs”

« Parallel enqueue with compaction cost
* Not suitable for light-node problems
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Basic ideas

« Each thread processes one or more frontier
nodes

* Find the index of each new frontier node
« Build gueue of next frentier hierarchically
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Two-level Hierarchy

* Block queue (b-queue)

— Inserted by all threads in a
block

Shared Mem

— Reside in Shared Memory

* Global queue (g-queue)
— Inserted only when a block

completes

* Problem:
— Collision on b-queues

g-queue

Global Mem

— Threads in the same block
can cause heavy contention



Warp-level Queue
Thread Scheduling
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Divide threads into 8 groups (for GTX280)

— Number of SP’s in each SM in general
— One queue to be written by each SP in the SM

Each group writes to one warp-level queue

Still should use atomic operation
— But much lower level of contention




Three-level hierarchy

g-gqueue



Hierarchical Queue Management

e Shared Memory:

— Interleaved queue layout, no bank conflict

W-queues[][8]

* Global Memory:
— Coalescing when releasing a b-queue to g-queue
— Moderate contention across blocks

* Texture memory :
— Store graph structure (random access, no coalescing)
— Fermi cache may help.



Hierarchical Queue Management

« Advantage and limitation

— The technique can be applied to any inherently
sequential data structure

— The w-queues and b-queues are limited by the
capacity of shared memory. If we know the upper limit
of the degree, we can adjust the number of threads
per block accordingly.



Kernel Arrangement

* To create global barriers needs
frequent kernel launches

Kernel call
b & * Too much overhead
e Solution:
Kernel call _ | |
5 6 @ — Partially use GPU-synchronization
— Three-layer Kernel Arrangement
Kernel call
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Hierarchical Kernel Arrangement

« Customize kernels based on the size of frontiers.

« Use GPU synchronization when the frontier is
small.

One-level parallel propagatior
Kernel 1: Intra-block Sync.

—

Kernel 2: Inter-block Sync.

Kernel 3: Kernel re-
launch



Kernel Arrangement

Kernel 1: small-sized frontiers
— Only launch one block
— Use CUDA barrier function

— Propagate through multiple
levels

— Save global memory
access
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Kernel Arrangement

« Kernel 2: mid-sized frontiers
— Launch m blocks (m = #SM)
— Each block is assigned to one SM and stays active
— Use global memory to implement inter-block synchronization

— Global synch across blocks is allowed in CUDA when all there is
only one block per SM

— Propagate through multiple levels
« Kernel 3: big-sized frontiers

— Use kernel re-launch to implement synchronization

— The kernel launch overhead is acceptable considering the time to
propagate a huge frontier



Kernel Arrangement for GTX280

Kernel 1: Intra-block Sync.
<512 nodes

Kernel 2: Inter-block Sync.
< 15360 (30*512)

Kernel 3: kernel terminatior

Assumption: #SM = 30 Sync.
#Thread/block = 512 > 15360



Experimental setup

 CPU implementation
— The classical BFS algorithm (O(V+E))

— dual socket dual core 2.4 Ghz Opteron processor with
8GB memory.

 GPU: NVIDIA GeForce GTX280

 Benchmarks
— Near-regular graphs (degree = 6)
— Real world graphs (avg. degree = 2, max degree = 9)
— Scale free graphs

* 0.1% of the vertices: degree = 1000
« The remaining vertices: degree = 6



Results on near-regular graphs

#Vertex IHIT-BFS CPU-BFS | UIUC-BFS | Speedup

(M) (ms) (ms) (ms) (CPU/UIUC)

1 462.8 146.7 67.8 2.2

2 1129.2 311.8 121.0 2.6

5 4092.2 1402.2 266.0 5.3

7 6597.5 2831.4 509.5 5.6

9 9170.1 4388.3 449.3 0.8

10 11019.8 5023.0 488.0 10.3




Results on real-world graphs

#Vertex IIT-BFS CPU-BFS | UIUC-BFS | Speedup
(ms) (ms) (ms) (CPU/UIUC)
264,346 79.9 41.6 19.4 2.1
1,070,376 372.0 120.7 61.7 2.0
3,598,623 1471.1 581.4 158.5 3.7
6,262,104 2579.4 1323.0 236.6 5.6




Results on scale-free graphs

#Vertex (M) IIT-BFS (ms) | CPU-BFS (ms) | UIUC-BFS (ms)
1 161.5 52.8 100.7

5 1015.4 284.0 302.0

10 2252.8 506.9 483.6

« Parallelism on the imbalanced problems does
not work as well as of today.




Concluding Remarks

« Effectively accelerated BFS, considering the upper limit
of such memory-bound applications
— Still need to address non-uniform data distribution

» Hierarchical queue management and multi-layer kernel
arrangement are potentially applicable to other types of
algorithms with dynamic data (work)

* To fully exploit the power of GPU computation, we need
more efforts at the data structure and algorithmic level.
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ANY FURTHER QUESTIONS?
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