
Numerical Libraries for
Petascale Computing

Brett Bode
William Gropp

Why Use Libraries?

•  There are many reasons to use libraries:
•  Faster - Code “tricks”
•  Faster – Better Algorithms
•  Correct
•  More productive programming
•  Stuff you don’t want to do

•  There are some reasons not to use libraries
•  I’ll mention some during the presentation

2

Faster (Better Code)

•  Achieving best performance can require creating
very processor- and system-specific code

•  Example: Dense matrix-matrix multiply (DGEMM)
•  Simple to express: In Fortran,

do i=1, n
 do j=1,n
 c(i,j) = 0
 do k=1,n
 c(i,j) = c(i,j) + a(i,k) * b(k,j)

3

Performance Estimate

•  How fast should this run?
•  Standard complexity analysis in numerical analysis counts floating

point operations
•  Our matrix-matrix multiply algorithm has 2n3 floating point

operations
•  3 nested loops, each with n iterations
•  1 multiply, 1 add in each inner iteration

•  For n=100, 2x106 operations, or about 1 msec on a 2GHz
processor :)

•  For n=1000, 2x109 operations, or about 1 sec

4

The Reality

•  N=100
•  1818 MF (1.1ms)

•  N=1000
•  335 MF (6s)

•  What this tells us:
•  Obvious expression of algorithms are not

transformed into leading performance.

5

From Atlas

Compiler

Hand-tuned

Performance Gap in Compiled Code

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

6

Sometime Slower

•  Using a library routine is not always the best
choice:
•  Library routines add overhead
•  Fewer routines (simpler for user) adds more

overhead in determining exact operation
•  Apply the usual rules:

•  Instrument your code
•  Know what performance you need/expect
•  Only worry about code that takes a significant

fraction of the total run time
7

Faster (Better Code)

•  Example: Aggregation of operations
•  Consider

•  Do i=1,n
 y(i) = exp(x(i))
enddo

•  Can this be speeded up?
•  Yes!

•  Easy – Application requires less accuracy
•  Harder – Compute multiple exponentials at one time

•  Overlaps evaluation; share table lookups
•  Call vexp(y,x,n)

•  One example: IBM’s libmassv (http://www-01.ibm.com/software/
awdtools/mass/)

8

Faster (Better Algorithms)

•  Modern algorithms can provide significantly
greater performance

•  Example: Solving systems of linear equations
•  For most of the history of computing, as much of an

improvement in performance in solving systems of
linear equations arising from PDEs came from
better algorithms as from faster hardware

9

year

relative
speedup

Algorithms and Moore’s Law
This advance took place over a span of about 36 years, or 24 doubling times

for Moore’s Law
224≈16 million ⇒ the same as the factor from algorithms alone!

Thanks to David
Keyes for this
chart

10

Example: Multigrid

•  Multigrid can be a very effective algorithm for certain classes of
problems

•  Efficient implementations must address
•  Algorithmic choices (e.g., smoother)
•  Implementation for memory locality
•  Use as a preconditioner within a Krylov method

•  And that’s just on a single processor
•  Parallel versions add questions about efficient coarse grid solves,

data exchange, etc.
•  Libraries such as hypre (https://computation.llnl.gov/casc/

linear_solvers/sls_hypre.html) contain efficient implementations for
parallel systems

11

Correct
•  Some operations are subtle and require care to get them right
•  Example: (pseudo) random number generation in parallel

•  Using a local random generator such as srand produces
correlated values – not random at all

•  Simply using different seeds for each thread/process in a parallel
program isn’t enough (unless the seeds are picked very carefully)

•  SPRNG – Scalable Parallel Random Number Generator
•  Provides good pseudo-random number generators, suitable for use in

a parallel program
•  http://sprng.cs.fsu.edu/

12

Greater Productivity

•  Parallel programming is widely viewed as difficult
•  Much effort to develop programming languages that make

parallel programming “easy”
•  But what is really needed is a way to provide the data

structures, algorithms, and methods needed by the
computational scientist

•  A general purpose language is not the best way to do this
(though it may be a good way to implement it)

•  An alternative is through carefully designed libraries…

13

What Advantage Does This Approach Give You?

•  Example: A Poisson Solver in PETSc
•  The following 7 slides show a complete 2-d Poisson

solver in PETSc. Features of this solver:
•  Fully parallel
•  2-d decomposition of the 2-d mesh
•  Linear system described as a sparse matrix; user can select

many different sparse data structures
•  Linear system solved with any user-selected Krylov iterative

method and preconditioner provided by PETSc, including
GMRES with ILU, BiCGstab with Additive Schwarz, etc.

•  Complete performance analysis built-in
•  Only 7 slides of code!

14

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include <math.h>
#include "petscsles.h"
#include "petscda.h"
extern Mat FormLaplacianDA2d(DA, int);
extern Vec FormVecFromFunctionDA2d(DA, int, double (*)(double,double));
/* This function is used to define the right-hand side of the
 Poisson equation to be solved */
double func(double x, double y) {
 return sin(x*M_PI)*sin(y*M_PI); }

int main(int argc, char *argv[])
{
 SLES sles;
 Mat A;
 Vec b, x;
 DA grid;
 int its, n, px, py, worldSize;

 PetscInitialize(&argc, &argv, 0, 0);

Solve a Poisson Problem with Preconditioned GMRES

PETSC “objects” hide details
of distributed data structures
and function parameters

15

 /* Get the mesh size. Use 10 by default */
 n = 10;
 PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);
 /* Get the process decomposition. Default it the same as without
 DAs */
 px = 1;
 PetscOptionsGetInt(PETSC_NULL, "-px", &px, 0);
 MPI_Comm_size(PETSC_COMM_WORLD, &worldSize);
 py = worldSize / px;

 /* Create a distributed array */
 DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

 n, n, px, py, 1, 1, 0, 0, &grid);

 /* Form the matrix and the vector corresponding to the DA */
 A = FormLaplacianDA2d(grid, n);
 b = FormVecFromFunctionDA2d(grid, n, func);
 VecDuplicate(b, &x);

PETSc provides
routines to access
parameters and
defaults

PETSc provides
routines to create,
allocate, and
manage distributed
data structures

16

 SLESCreate(PETSC_COMM_WORLD, &sles);
 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);
 SLESSetFromOptions(sles);
 SLESSolve(sles, b, x, &its);

 PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");
 VecView(x, PETSC_VIEWER_STDOUT_WORLD);
 PetscPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);

 MatDestroy(A); VecDestroy(b); VecDestroy(x);
 SLESDestroy(sles); DADestroy(grid);
 PetscFinalize();
 return 0;
}

PETSc provides
routines that solve
systems of sparse
linear (and
nonlinear) equations

PETSc provides
coordinated I/O
(behavior is as-if a
single process),
including the output of
the distributed “vec”
object

17

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include "petsc.h"
#include "petscvec.h"
#include "petscda.h"

/* Form a vector based on a function for a 2-d regular mesh on the
 unit square */
Vec FormVecFromFunctionDA2d(DA grid, int n,
 double (*f)(double, double))
{
 Vec V;
 int is, ie, js, je, in, jn, i, j;
 double h;
 double **vval;

 h = 1.0 / (n + 1);
 DACreateGlobalVector(grid, &V);

 DAVecGetArray(grid, V, (void **)&vval);

18

/* Get global coordinates of this patch in the DA grid */
DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
ie = is + in - 1;
je = js + jn - 1;

 for (i=is ; i<=ie ; i++) {
 for (j=js ; j<=je ; j++){
 vval[j][i] = (*f)((i + 1) * h, (j + 1) * h);
 }

 }
 DAVecRestoreArray(grid, V, (void **)&vval);

 return V;
}

Almost the uniprocess code

19

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include "petscsles.h"
#include "petscda.h"

/* Form the matrix for the 5-point finite difference 2d Laplacian
 on the unit square. n is the number of interior points along a
 side */
Mat FormLaplacianDA2d(DA grid, int n)
{
 Mat A;
 int r, i, j, is, ie, js, je, in, jn, nelm;
 MatStencil cols[5], row;
 double h, oneByh2, vals[5];

 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);

 DAGetMatrix(grid, MATMPIAIJ, &A);
 /* Get global coordinates of this patch in the DA grid */
 DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
 ie = is + in - 1;
 je = js + jn - 1;

Creating a Sparse Matrix, Distributed Across All Processes

Creates a parallel distributed
matrix using compressed sparse
row format

20

for (i=is; i<=ie; i++) {
 for (j=js; j<=je; j++){
 row.j = j; row.i = i; nelm = 0;
 if (j - 1 > 0) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j - 1; cols[nelm++].i = i;}
 if (i - 1 > 0) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i - 1;}
 vals[nelm] = - 4 * oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i;
 if (i + 1 < n - 1) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i + 1;}
 if (j + 1 < n - 1) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j + 1; cols[nelm++].i = i;}
 MatSetValuesStencil(A, 1, &row, nelm, cols, vals,

 INSERT_VALUES);
 }

 }
 MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
 MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
 return A;
}

Just the usual
code for setting
the elements of
the sparse matrix
(the complexity
comes, as it often
does, from the
boundary
conditions)

21

On Blue Waters IBM will Provide

•  Engineering Scientific Subroutine Library (ESSL)
•  Most BLAS levels 1-3, LAPACK, FFT
•  Sequential or threaded
•  Analogous to Intel’s MKL, ATLAS, etc

•  Parallel ESSL
•  Analogous to ScaLAPACK
•  MPI plus subset of ESSL

22

On Blue Waters IBM will Provide

•  libmass/libmassv
•  Mathematical Acceleration SubSystem
•  Sequential/vector/simd versions
•  Sequential routines are standard math intrinsic

functions – Compiler will attempt to inline mass
versions when possible.

•  simd/vector versions are not portable
•  Compiler will attempt to generate calls to some routines,

but manually calling the library functions is
recommended.

23

Productivity Libraries and Frameworks

•  Several productivity libraries are receiving special
attention for Blue Waters
•  PETSc (www.mcs.anl.gov/petsc)
•  Cactus (http://www.cactuscode.org/)

•  There are many others
•  Let us know if there are libraries that are important

to your applications

24

Stuff You Don’t Want to Do

•  Such as Parallel I/O
•  Common for applications to funnel all I/O through

one process
•  Works around bugs in common file systems such

as NFS
•  Ensures that output is in canonical (natural) format

expected by other applications

25

Portable File Formats

•  Ad-hoc file formats
•  Difficult to collaborate
•  Cannot leverage post-processing tools

•  MPI provides external32 data encoding
•  High level I/O libraries

•  netCDF and HDF5
•  Better solutions than external32

•  Define a “container” for data
•  Describes contents
•  May be queried (self-describing)

•  Standard format for metadata about the file
•  Wide range of post-processing tools available

26

Higher Level I/O Libraries

•  Scientific applications work with structured data and
desire more self-describing file formats

•  netCDF and HDF5 are two popular “higher level” I/O
libraries
•  Abstract away details of file layout
•  Provide standard, portable file formats
•  Include metadata describing contents

•  For parallel machines, these should be built on top of
MPI-IO
•  HDF5 has an MPI-IO option

•  http://www.hdfgroup.org/HDF5/

27

28

Parallel netCDF (PnetCDF)

•  (Serial) netCDF
•  API for accessing multi-dimensional data

sets
•  Portable file format
•  Popular in both fusion and climate

communities
•  Parallel netCDF

•  Very similar API to netCDF
•  Tuned for better performance in today’s

computing environments
•  Retains the file format so netCDF and

PnetCDF applications can share files
•  PnetCDF builds on top of any MPI-IO

implementation
•  http://trac.mcs.anl.gov/projects/parallel-

netcdf

ROMIO

PnetCDF

PVFS2

Cluster

IBM MPI

PnetCDF

GPFS

IBM

29

I/O in netCDF and PnetCDF
•  (Serial) netCDF

•  Parallel read
•  All processes read the file independently
•  No possibility of collective optimizations

•  Sequential write
•  Parallel writes are carried out by

shipping data to a single process

•  PnetCDF
•  Parallel read/write to shared netCDF file
•  Built on top of MPI-IO which utilizes

optimal I/O facilities of the parallel file
system and MPI-IO implementation

•  Allows for MPI-IO hints and datatypes
for further optimization

P0 P1 P2 P3

netCDF

Parallel File System

Parallel netCDF

P0 P1 P2 P3

Parallel File System

Higher Level Parallel I/O Libraries

•  PRACs have indicated a need for
•  MPI-IO
•  HDF-5
•  pnetCDF

•  Others recognize need for parallel I/O
•  Many use I/O through one process

•  Reasons of simplicity, avoid errors/performance problems in
concurrent access to a common file

•  These will need to adapt to other I/O approaches as full
performance will require parallel I/O

I/O Library Tuning Issues

•  No really good parallel I/O benchmarks
•  IOR, b_eff_io have value but also significant limitations

•  In particular, application I/O patterns don’t match benchmark patterns
•  Performance inconsistencies

•  MPI-IO and pnetCDF should have similar performance
•  MPI-IO and HDF-5 should have similar performance for data
•  POSIX I/O and comparable MPI-IO patterns should have

similar performance
•  Performance consistency is important (but not sufficient) for

scalability
•  But performance inconsistencies are common in practice

I/O Library Tuning Activities

•  Currently developing tests to understand performance inconsistencies
•  Working with IOR as a basis for tests; extending as necessary
•  MPI-IO/pnetCDT/HDF-5 tests for both per process performance

and for scalability
•  MPI-IO vs. POSIX for per process performance
•  These are a necessary first step before focusing on scaling

•  Also developing correctness tests for concurrent updates to a single
file
•  Test should/will fail for NFS (not POSIX semantics)
•  Test should not fail for GPFS

•  But anything not tested isn’t known to work

Recommendations

•  Don’t do it yourself!
•  Use Frameworks and Libraries where possible
•  Exploit principles used in those libraries if you need to write your

own
•  Upgrade existing programs

•  Much can be done by update/replacing core parts of the
application

•  Embrace multicore – Libraries can be a part of this solution
•  “MPI everywhere” not a solution

•  Start over (at least for parts)
•  Real Petascale may require new algorithms and even

mathematical models

Summary
•  There are many reasons to use libraries:

•  Faster
•  Correct
•  Real parallel I/O
•  More productive programming

•  The best reason: they let you focus on getting
your science done

•  There are many libraries available
•  Only a few mentioned in this talk
•  Many other good ones available – ask!

34

