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Why Use Libraries? 

•  There are many reasons to use libraries: 
•  Faster - Code “tricks” 
•  Faster – Better Algorithms 
•  Correct 
•  More productive programming 
•  Stuff you don’t want to do 

•  There are some reasons not to use libraries 
•  I’ll mention some during the presentation 
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Faster (Better Code) 

•  Achieving best performance can require creating 
very processor- and system-specific code 

•  Example: Dense matrix-matrix multiply (DGEMM) 
•  Simple to express:  In Fortran,  

do i=1, n 
   do j=1,n 
       c(i,j) = 0 
       do k=1,n 
            c(i,j) = c(i,j) + a(i,k) * b(k,j) 
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Performance Estimate 

•  How fast should this run? 
•  Standard complexity analysis in numerical analysis counts floating 

point operations 
•  Our matrix-matrix multiply algorithm has 2n3 floating point 

operations 
•  3 nested loops, each with n iterations 
•  1 multiply, 1 add in each inner iteration 

•  For n=100, 2x106 operations, or about 1 msec on a 2GHz 
processor :) 

•  For n=1000, 2x109 operations, or about 1 sec 

4 



The Reality 

•  N=100 
•  1818 MF (1.1ms) 

•  N=1000 
•  335 MF (6s) 

•  What this tells us: 
•  Obvious expression of algorithms are not 

transformed into leading performance. 
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From Atlas 

Compiler 

Hand-tuned 

Performance Gap in Compiled Code 

Enormous effort required to get good performance 

Large gap between 
natural code and 
specialized code  
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Sometime Slower 

•  Using a library routine is not always the best 
choice: 
•  Library routines add overhead 
•  Fewer routines (simpler for user) adds more 

overhead in determining exact operation 
•  Apply the usual rules: 

•  Instrument your code 
•  Know what performance you need/expect 
•  Only worry about code that takes a significant 

fraction of the total run time 
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Faster (Better Code) 

•  Example: Aggregation of operations  
•  Consider 

•  Do i=1,n 
    y(i) = exp(x(i)) 
enddo 

•  Can this be speeded up? 
•  Yes! 

•  Easy – Application requires less accuracy 
•  Harder – Compute multiple exponentials at one time 

•  Overlaps evaluation; share table lookups 
•  Call vexp(y,x,n) 

•  One example: IBM’s libmassv (http://www-01.ibm.com/software/
awdtools/mass/) 
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Faster (Better Algorithms) 

•  Modern algorithms can provide significantly 
greater performance 

•  Example: Solving systems of linear equations 
•  For most of the history of computing, as much of an 

improvement in performance in solving systems of 
linear equations arising from PDEs came from 
better algorithms as from faster hardware 
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year 

relative 
speedup 

Algorithms and Moore’s Law 
This advance took place over a span of about 36 years, or 24 doubling times 

for Moore’s Law 
224≈16 million ⇒ the same as the factor from algorithms alone! 

Thanks to David 
Keyes for this 
chart 

10 



Example: Multigrid 

•  Multigrid can be a very effective algorithm for certain classes of 
problems 

•  Efficient implementations must address 
•  Algorithmic choices (e.g., smoother) 
•  Implementation for memory locality 
•  Use as a preconditioner within a Krylov method 

•  And that’s just on a single processor 
•  Parallel versions add questions about efficient coarse grid solves, 

data exchange, etc. 
•  Libraries such as hypre (https://computation.llnl.gov/casc/

linear_solvers/sls_hypre.html) contain efficient implementations for 
parallel systems 
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Correct 
•  Some operations are subtle and require care to get them right 
•  Example: (pseudo) random number generation in parallel 

•  Using a local random generator such as srand produces 
correlated values – not random at all 

•  Simply using different seeds for each thread/process in a parallel 
program isn’t enough (unless the seeds are picked very carefully) 

•  SPRNG – Scalable Parallel Random Number Generator 
•  Provides good pseudo-random number generators, suitable for use in 

a parallel program 
•  http://sprng.cs.fsu.edu/ 
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Greater Productivity 

•  Parallel programming is widely viewed as difficult 
•  Much effort to develop programming languages that make 

parallel programming “easy” 
•  But what is really needed is a way to provide the data 

structures, algorithms, and methods needed by the 
computational scientist 

•  A general purpose language is not the best way to do this 
(though it may be a good way to implement it) 

•  An alternative is through carefully designed libraries…  

13 



What Advantage Does This Approach Give You? 

•  Example: A Poisson Solver in PETSc 
•  The following 7 slides show a complete 2-d Poisson 

solver in PETSc.  Features of this solver: 
•  Fully parallel 
•  2-d decomposition of the 2-d mesh 
•  Linear system described as a sparse matrix; user can select 

many different sparse data structures 
•  Linear system solved with any user-selected Krylov iterative 

method and preconditioner provided by PETSc, including 
GMRES with ILU, BiCGstab with Additive Schwarz, etc. 

•  Complete performance analysis built-in 
•  Only 7 slides of code! 
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/* -*- Mode: C; c-basic-offset:4 ; -*- */ 
#include <math.h> 
#include "petscsles.h" 
#include "petscda.h" 
extern Mat FormLaplacianDA2d( DA, int ); 
extern Vec FormVecFromFunctionDA2d( DA, int, double (*)(double,double) ); 
/* This function is used to define the right-hand side of the  
   Poisson equation to be solved */ 
double func( double x, double y ) { 
    return sin(x*M_PI)*sin(y*M_PI); } 

int main( int argc, char *argv[] ) 
{ 
    SLES       sles; 
    Mat        A; 
    Vec        b, x; 
    DA         grid; 
    int        its, n, px, py, worldSize; 

    PetscInitialize( &argc, &argv, 0, 0 );     

Solve a Poisson Problem with Preconditioned GMRES 

PETSC “objects” hide details 
of distributed data structures 
and function parameters  
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    /* Get the mesh size.  Use 10 by default */ 
    n = 10; 
    PetscOptionsGetInt( PETSC_NULL, "-n", &n, 0 ); 
    /* Get the process decomposition.  Default it the same as without 
       DAs */ 
    px = 1; 
    PetscOptionsGetInt( PETSC_NULL, "-px", &px, 0 ); 
    MPI_Comm_size( PETSC_COMM_WORLD, &worldSize ); 
    py = worldSize / px; 

    /* Create a distributed array */ 
    DACreate2d( PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR, 

  n, n, px, py, 1, 1, 0, 0, &grid ); 

    /* Form the matrix and the vector corresponding to the DA */ 
    A = FormLaplacianDA2d( grid, n ); 
    b = FormVecFromFunctionDA2d( grid, n, func ); 
    VecDuplicate( b, &x ); 

PETSc provides 
routines to access 
parameters and 
defaults 

PETSc provides 
routines to create, 
allocate, and 
manage distributed 
data structures 
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    SLESCreate( PETSC_COMM_WORLD, &sles ); 
    SLESSetOperators( sles, A, A, DIFFERENT_NONZERO_PATTERN ); 
    SLESSetFromOptions( sles ); 
    SLESSolve( sles, b, x, &its ); 

    PetscPrintf( PETSC_COMM_WORLD, "Solution is:\n" ); 
    VecView( x, PETSC_VIEWER_STDOUT_WORLD ); 
    PetscPrintf( PETSC_COMM_WORLD, "Required %d iterations\n", its ); 

    MatDestroy( A ); VecDestroy( b ); VecDestroy( x ); 
    SLESDestroy( sles ); DADestroy( grid ); 
    PetscFinalize( ); 
    return 0; 
} 

PETSc provides 
routines that solve 
systems of sparse 
linear (and 
nonlinear) equations 

PETSc provides 
coordinated I/O 
(behavior is as-if a 
single process), 
including the output of 
the distributed “vec” 
object 
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/* -*- Mode: C; c-basic-offset:4 ; -*- */ 
#include "petsc.h" 
#include "petscvec.h" 
#include "petscda.h" 

/* Form a vector based on a function for a 2-d regular mesh on the  
   unit square */ 
Vec FormVecFromFunctionDA2d( DA grid, int n,  
                             double (*f)( double, double ) ) 
{ 
    Vec    V; 
    int    is, ie, js, je, in, jn, i, j; 
    double h; 
    double **vval; 

    h = 1.0 / (n + 1);  
    DACreateGlobalVector( grid, &V ); 

    DAVecGetArray( grid, V, (void **)&vval ); 
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/* Get global coordinates of this patch in the DA grid */ 
DAGetCorners( grid, &is, &js, 0, &in, &jn, 0 ); 
ie = is + in - 1; 
je = js + jn - 1; 

 for (i=is ; i<=ie ; i++) { 
 for (j=js ; j<=je ; j++){ 
     vval[j][i] = (*f)( (i + 1) * h, (j + 1) * h ); 
 } 

    } 
    DAVecRestoreArray( grid, V, (void **)&vval ); 

    return V; 
} 

Almost the uniprocess code 
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/* -*- Mode: C; c-basic-offset:4 ; -*- */ 
#include "petscsles.h" 
#include "petscda.h" 

/* Form the matrix for the 5-point finite difference 2d Laplacian 
   on the unit square. n is the number of interior points along a  
   side */ 
Mat FormLaplacianDA2d( DA grid, int n ) 
{ 
    Mat    A; 
    int    r, i, j, is, ie, js, je, in, jn, nelm; 
    MatStencil cols[5], row; 
    double     h, oneByh2, vals[5]; 

    h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h); 

    DAGetMatrix( grid, MATMPIAIJ, &A ); 
    /* Get global coordinates of this patch in the DA grid */ 
    DAGetCorners( grid, &is, &js, 0, &in, &jn, 0 ); 
    ie = is + in - 1; 
    je = js + jn - 1; 

Creating a Sparse Matrix, Distributed Across All Processes 

Creates a parallel distributed 
matrix using compressed sparse 
row format 
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for (i=is; i<=ie; i++) { 
 for (j=js; j<=je; j++){ 
     row.j = j; row.i = i; nelm = 0; 
     if (j - 1 > 0) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j - 1; cols[nelm++].i = i;} 
     if (i - 1 > 0) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j;     cols[nelm++].i = i - 1;} 
     vals[nelm]   = - 4 * oneByh2; 
     cols[nelm].j = j;         cols[nelm++].i = i; 
     if (i + 1 < n - 1) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j;     cols[nelm++].i = i + 1;} 
     if (j + 1 < n - 1) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j + 1; cols[nelm++].i = i;} 
     MatSetValuesStencil( A, 1, &row, nelm, cols, vals,  

                                 INSERT_VALUES ); 
 } 

    } 
    MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY); 
    MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY); 
    return A; 
} 

Just the usual 
code for setting 
the elements of 
the sparse matrix 
(the complexity 
comes, as it often 
does, from the 
boundary 
conditions) 
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On Blue Waters IBM will Provide 

•  Engineering Scientific Subroutine Library (ESSL) 
•  Most BLAS levels 1-3, LAPACK, FFT 
•  Sequential or threaded 
•  Analogous to Intel’s MKL, ATLAS, etc 

•  Parallel ESSL 
•  Analogous to ScaLAPACK 
•  MPI plus subset of ESSL 
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On Blue Waters IBM will Provide 

•  libmass/libmassv 
•  Mathematical Acceleration SubSystem 
•  Sequential/vector/simd versions 
•  Sequential routines are standard math intrinsic 

functions – Compiler will attempt to inline mass 
versions when possible. 

•  simd/vector versions are not portable 
•  Compiler will attempt to generate calls to some routines, 

but manually calling the library functions is 
recommended. 
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Productivity Libraries and Frameworks   

•  Several productivity libraries are receiving special 
attention for Blue Waters   
•  PETSc (www.mcs.anl.gov/petsc) 
•  Cactus (http://www.cactuscode.org/)  

•  There are many others 
•  Let us know if there are libraries that are important 

to your applications 
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Stuff You Don’t Want to Do 

•  Such as Parallel I/O 
•  Common for applications to funnel all I/O through 

one process 
•  Works around bugs in common file systems such 

as NFS 
•  Ensures that output is in canonical (natural) format 

expected by other applications 
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Portable File Formats 

•  Ad-hoc file formats  
•  Difficult to collaborate 
•  Cannot leverage post-processing tools  

•  MPI provides external32 data encoding 
•  High level I/O libraries 

•  netCDF and HDF5 
•  Better solutions than external32 

•  Define a “container” for data 
•  Describes contents 
•  May be queried (self-describing) 

•  Standard format for metadata about the file 
•  Wide range of post-processing tools available 
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Higher Level I/O Libraries 

•  Scientific applications work with structured data and 
desire more self-describing file formats 

•  netCDF and HDF5 are two popular “higher level” I/O 
libraries 
•  Abstract away details of file layout 
•  Provide standard, portable file formats 
•  Include metadata describing contents 

•  For parallel machines, these should be built on top of 
MPI-IO 
•  HDF5 has an MPI-IO option 

•  http://www.hdfgroup.org/HDF5/ 
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Parallel netCDF (PnetCDF) 

•  (Serial) netCDF 
•  API for accessing multi-dimensional data 

sets 
•  Portable file format 
•  Popular in both fusion and climate 

communities 
•  Parallel netCDF 

•  Very similar API to netCDF 
•  Tuned for better performance in today’s 

computing environments 
•  Retains the file format so netCDF and 

PnetCDF applications can share files 
•  PnetCDF builds on top of any MPI-IO 

implementation 
•  http://trac.mcs.anl.gov/projects/parallel-

netcdf 

ROMIO 

PnetCDF 

PVFS2 

Cluster 

IBM MPI 

PnetCDF 

GPFS 

IBM 
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I/O in netCDF and PnetCDF 
•  (Serial) netCDF 

•  Parallel read 
•  All processes read the file independently 
•  No possibility of collective optimizations 

•  Sequential write 
•  Parallel writes are carried out by 

shipping data to a single process 

•  PnetCDF 
•  Parallel read/write to shared netCDF file 
•  Built on top of MPI-IO which utilizes 

optimal I/O facilities of the parallel file 
system and MPI-IO implementation 

•  Allows for MPI-IO hints and datatypes 
for further optimization 

P0 P1 P2 P3 

netCDF 

Parallel File System 

Parallel netCDF 

P0 P1 P2 P3 

Parallel File System 



Higher Level Parallel I/O Libraries 

•  PRACs have indicated a need for  
•  MPI-IO 
•  HDF-5 
•  pnetCDF 

•  Others recognize need for parallel I/O 
•  Many use I/O through one process 

•  Reasons of simplicity, avoid errors/performance problems in 
concurrent access to a common file 

•  These will need to adapt to other I/O approaches as full 
performance will require parallel I/O 



I/O Library Tuning Issues 

•  No really good parallel I/O benchmarks 
•  IOR, b_eff_io have value but also significant limitations 

•  In particular, application I/O patterns don’t match benchmark patterns 
•  Performance inconsistencies 

•  MPI-IO and pnetCDF should have similar performance 
•  MPI-IO and HDF-5 should have similar performance for data 
•  POSIX I/O and comparable MPI-IO patterns should have 

similar performance 
•  Performance consistency is important (but not sufficient) for 

scalability 
•  But performance inconsistencies are common in practice 



I/O Library Tuning Activities 

•  Currently developing tests to understand performance inconsistencies 
•  Working with IOR as a basis for tests; extending as necessary 
•  MPI-IO/pnetCDT/HDF-5 tests for both per process performance 

and for scalability 
•  MPI-IO vs. POSIX for per process performance 
•  These are a necessary first step before focusing on scaling 

•  Also developing correctness tests for concurrent updates to a single 
file 
•  Test should/will fail for NFS (not POSIX semantics) 
•  Test should not fail for GPFS 

•  But anything not tested isn’t known to work 



Recommendations 

•  Don’t do it yourself! 
•  Use Frameworks and Libraries where possible 
•  Exploit principles used in those libraries if you need to write your 

own 
•  Upgrade existing programs 

•  Much can be done by update/replacing core parts of the 
application 

•  Embrace multicore – Libraries can be a part of this solution 
•  “MPI everywhere” not a solution 

•  Start over (at least for parts) 
•  Real Petascale may require new algorithms and even 

mathematical models 



Summary 
•  There are many reasons to use libraries: 

•  Faster 
•  Correct 
•  Real parallel I/O 
•  More productive programming 

•  The best reason: they let you focus on getting 
your science done 

•  There are many libraries available 
•  Only a few mentioned in this talk 
•  Many other good ones available – ask! 
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