
© 2010 Pittsburgh Supercomputing Center

Performance Engineering of Parallel
Applications

Philip Blood, Raghu Reddy
Pittsburgh Supercomputing Center

© 2010 Pittsburgh Supercomputing Center

POINT Project

•  “High-Productivity Performance Engineering
(Tools, Methods, Training) for NSF HPC
Applications”
–  NSF SDCI, Software Improvement and Support
–  University of Oregon, University of Tennessee,

National Center for Supercomputing
Applications, Pittsburgh Supercomputing Center

•  POINT project
–  Petascale Productivity from Open, Integrated

Tools
–  http://www.nic.uoregon.edu/point

© 2010 Pittsburgh Supercomputing Center

Parallel Performance Technology

•  PAPI
–  University of Tennessee, Knoxville

•  PerfSuite
–  National Center for Supercomputing Applications

•  TAU Performance System
–  University of Oregon

•  Kojak / Scalasca
–  Research Centre Juelich

© 2010 Pittsburgh Supercomputing Center

•  Choice of algorithm most important consideration
(serial and parallel)

•  Highly scalable codes must be designed to be
scalable from the beginning!

•  Measurement may reveal need for new algorithm or
completely different implementation rather than
optimization

•  Focus of this lecture: using tools to assess parallel
performance

Choose
algorithm Implement Measure Optimize

Code Development and Optimization Process

© 2010 Pittsburgh Supercomputing Center

A little background...

© 2010 Pittsburgh Supercomputing Center

Hardware Counters
•  Counters: set of registers that count processor

events, like floating point operations, or cycles
(Opteron has 4 registers, so 4 types of events can
be monitored simultaneously)

•  PAPI: Performance API
•  Standard API for accessing hardware performance

counters
•  Enable mapping of code to underlying architecture
•  Facilitates compiler optimizations and hand tuning
•  Seeks to guide compiler improvements and

architecture development to relieve common
bottlenecks

© 2010 Pittsburgh Supercomputing Center

Features of PAPI

•  Portable: uses same routines to access
counters across all architectures

•  High-level interface
–  Using predefined standard events the same source

code can access similar counters across various
architectures without modification.

–  papi_avail
•  Low-level interface

–  Provides access to all machine specific counters
(requires source code modification)

–  Increased efficiency and flexibility
–  papi_native_avail

•  Third-party tools
–  TAU, Perfsuite, IPM

© 2010 Pittsburgh Supercomputing Center

Example: High-level interface

#include <papi.h>
#define NUM_EVENTS 2
main()
{
int Events[NUM_EVENTS] = {PAPI_TOT_INS, PAPI_TOT_CYC};
long_long values[NUM_EVENTS];
/* Start counting events */
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK)
handle_error(1);
/* Do some computation here*/
/* Read the counters */
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK)
handle_error(1);
/* Do some computation here */
/* Stop counting events */
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK)
handle_error(1);
}

© 2010 Pittsburgh Supercomputing Center

Measurement Techniques

•  When is measurement triggered?
–  Sampling (indirect, external, low overhead)

•  interrupts, hardware counter overflow, …
–  Instrumentation (direct, internal, high overhead)

•  through code modification

•  How are measurements made?
–  Profiling

•  summarizes performance data during execution
•  per process / thread and organized with respect to

context
–  Tracing

•  trace record with performance data and timestamp
•  per process / thread

© 2010 Pittsburgh Supercomputing Center

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a = a + 1;

 bar();

 a = a + 1;
 return a;
}

Inclusive and Exclusive Profiles

•  Performance with respect to code regions
•  Exclusive measurements for region only
•  Inclusive measurements includes child regions

© 2010 Pittsburgh Supercomputing Center

Applying Performance Tools to Improve Parallel
Performance of the UNRES MD code

 The UNRES molecular dynamics (MD) code utilizes a carefully-derived
mesoscopic protein force field to study and predict protein folding pathways
by means of molecular dynamics simulations.

http://cbsu.tc.cornell.edu/software/protarch/index.htm http://www.chem.cornell.edu/has5/

© 2010 Pittsburgh Supercomputing Center

Structure of UNRES

•  Two issues
–  Master/Worker code

–  Significant startup time: must remove from profiling
•  Setup time: 300 sec
•  MD Time: 1 sec/step
•  Only MD time important for production runs of

millions of steps
•  Could run for 30,000 steps to amortize startup!

 if (myrank==0)
 MD=>...=>EELEC
 else
 ERGASTULUM=>...=>EELEC
 endif

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

Is There a Performance Problem?

•  What does it mean for a code to perform “poorly”?
–  HPL on 4K cores can take a couple of hrs
–  Quantum calculations involving a few atoms may

take a week
–  Depends on the work being done
•  Where does performance need to be

improved?
–  Serial performance problem?
–  Parallel performance problem?

© 2010 Pittsburgh Supercomputing Center

Detecting Performance Problems
•  Serial Performance: Fraction of Peak

–  20% peak (overall) is usually decent; After that
you decide how much effort it is worth

–  Theoretical FLOP/sec peak = FLOP/cycle *
cycles/sec

–  80:20 rule
•  Parallel Performance: Scalability

–  Does run time decrease by 2x when I use 2x
cores?

•  Strong scalability
–  Does run time remain the same when I keep the

amount of work per core the same?
•  Weak scalability

© 2010 Pittsburgh Supercomputing Center

IPM

•  Very good tool to get an overall picture
–  Overall MFLOP
–  Communication/Computation ratio

•  Pros
–  Quick and easy!
–  Minimal overhead (uses sampling rather than source

code instrumentation)
•  Cons

–  Harder to get at “nitty gritty” details
–  No OpenMP support

http://ipm-hpc.sourceforge.net/

© 2010 Pittsburgh Supercomputing Center

IPM Mechanics

On Ranger:

1) module load ipm

2) just before the ibrun command in the batch script add:
 setenv LD_PRELOAD $TACC_IPM_LIB/libipm.so

3) run as normal

4) to generate webpage

 module load ipm (if not already)
 ipm_parse -html <xml_file>

You should be left with a directory with the html in. Tar it up, move to
to your local computer and open index.html with your browser.

© 2010 Pittsburgh Supercomputing Center

IPM Overhead

•  Was run with 500 MD steps (time in sec)
–  base: MD steps: 5.14637E+01
–  base-ipm: MD steps: 5.13576E+01

•  Overhead is negligible

© 2010 Pittsburgh Supercomputing Center

IPM Results: Overall Picture

© 2010 Pittsburgh Supercomputing Center

IPM – Communication (overall)

© 2010 Pittsburgh Supercomputing Center

PerfSuite

•  Similar to IPM: great for getting overall picture of
application performance

•  Pros
–  Easy: no need to recompile
–  Minimal overhead
–  Provides function-level information
–  Works with OpenMP

•  Cons
–  Not available on all architectures: (x86, x86-64,

em64t, and ia64)
http://perfsuite.ncsa.uiuc.edu/

© 2010 Pittsburgh Supercomputing Center

PerfSuite Mechanics: Overall performance

 % set PSDIR=/opt/perfsuite
 % source $PSDIR/bin/psenv.csh

 # Use psrun on your program to generate the data,
 # then use psprocess to produce an output file (default is

plain text)

 # First run: this will give you a summary of performance
information over total program execution (e.g. MFLOPS)

 % psrun myprog

 % psprocess myprog.12345.xml > myprog.txt

© 2010 Pittsburgh Supercomputing Center

First case provides hardware counter stats

Index Description Counter Value
===
1 Conditional branch instructions mispredicted..... 4831072449
4 Floating point instructions...................... 86124489172
5 Total cycles..................................... 594547754568
6 Instructions completed........................... 1049339828741

Statistics
===
Graduated instructions per cycle................... 1.765
Graduated floating point instructions per cycle.... 0.145
Level 3 cache miss ratio (data).................... 0.957
Bandwidth used to level 3 cache (MB/s)............. 385.087
% cycles with no instruction issue................. 10.410
% cycles stalled on memory access.................. 43.139
MFLOPS (cycles).................................... 115.905
MFLOPS (wallclock)................................. 114.441

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca

© 2010 Pittsburgh Supercomputing Center

UNRES: Serial Performance
Processor and System Information (abbreviated output from PerfSuite)
===
Node CPUs : 768
Vendor : Intel
Family : Itanium 2
Clock (MHz) : 1669.001

Statistics
==
Floating point operations per cycle.................................... 0.597
MFLOPS (cycles).. 995.801
CPU time (seconds)... 1404.675

•  Theoretical peak on Itanium2: 4 FLOP/cycle *1669 MHz = 6676 MFLOPS
•  UNRES getting 15% of peak--needs serial optimization on Itanium
•  Much better on Bigben (x86_64): 1720 MFLOPS, 33% peak
•  Make sure compiler is inlining (-ipo needed for ifort, –Minline=reshape needed for
pgf90)

© 2010 Pittsburgh Supercomputing Center

UNRES: Parallel Performance

1	

2	

4	

8	

16	

32	

64	

128	

256	

512	

1024	

1	 2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

!
m
es
te
ps
/s
ec
	 	

Cores	

UNRES	 Performance:	 Cray	 XT3	 	

Bigben	

Ideal	

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

Which Functions are Important?

•  Usually a handful of functions account for
90% of the execution time

•  Make sure you are measuring the
production part of your code

•  For parallel apps, measure at high core
counts – insignificant functions become
significant!

© 2010 Pittsburgh Supercomputing Center

PerfSuite Mechanics: Function breakdown

 % set PSDIR=/opt/perfsuite
 % source $PSDIR/bin/psenv.csh

 # Use psrun on your program to generate the data,
 # then use psprocess to produce an output file (default is

plain text)

 # This will break down cycles spent in each function

 % psrun –C -c papi_profile_cycles.xml myprog

 % psprocess -e myprog myprog.67890.xml > myprog_functions.txt

© 2010 Pittsburgh Supercomputing Center

Second case gives contributions of functions
Function Summary
--
 Samples Self % Total % Function

 154346 76.99% 76.99% pc_jac2d_blk3
 14506 7.24% 84.23% cg3_blk
 10185 5.08% 89.31% matxvec2d_blk3
 6937 3.46% 92.77% __kmp_x86_pause
 4711 2.35% 95.12% __kmp_wait_sleep
 3042 1.52% 96.64% dot_prod2d_blk3
 2366 1.18% 97.82% add_exchange2d_blk3

Function:File:Line Summary
--
 Samples Self % Total % Function:File:Line

 39063 19.49% 19.49% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20
 24134 12.04% 31.52% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19
 15626 7.79% 39.32% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21
 15028 7.50% 46.82% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33
 13878 6.92% 53.74% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24
 11880 5.93% 59.66% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31
 8896 4.44% 64.10% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22
 7863 3.92% 68.02% matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19
 7145 3.56% 71.59% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca

© 2010 Pittsburgh Supercomputing Center

PerfSuite Function Summary

Function Summary

 Samples Self % Total % Function

 2905589 51.98% 51.98% eelecij
 827023 14.79% 66.77% egb
 634107 11.34% 78.11% setup_md_matrices
 247353 4.42% 82.54% escp
 220089 3.94% 86.48% etrbk3
 183492 3.28% 89.76% einvit
 144851 2.59% 92.35% banach
 132058 2.36% 94.71% ginv_mult
 66182 1.18% 95.89% multibody_hb
 39495 0.71% 96.60% etred3
 38111 0.68% 97.28% eelec

•  Short runs include
some startup
functions amongst
top functions

•  To eliminate this
perform a full
production run with
PerfSuite

•  Can use PerfSuite
and IPM during
production runs due
to low overhead—
minimal impact on
application
performance

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

Instrument Key Functions

•  Instrumentation: Insert functions into source
code to measure performance

•  Pro: Gives precise information about where
things happen

•  Con: High overhead and perturbation of
application performance

•  Thus essential to only instrument important
functions

© 2010 Pittsburgh Supercomputing Center

TAU: Tuning and Analysis Utilities

•  Useful for a more detailed analysis
–  Routine level
–  Loop level
–  Performance counters
–  Communication performance

•  A more sophisticated tool
–  Performance analysis of Fortran, C, C++, Java,

and Python
–  Portable: Tested on all major platforms
–  Steeper learning curve
http://www.cs.uoregon.edu/research/tau/home.php

© 2010 Pittsburgh Supercomputing Center

General Instructions for TAU

•  Use a TAU Makefile stub (even if you don’t use
makefiles for your compilation)

•  Use TAU scripts for compiling (tau_cc.sh tau_f90.sh)
•  Example (most basic usage):

•  Excellent “Cheat Sheet”!
–  Everything you need to know?! (Almost)

 http://www.psc.edu/general/software/packages/tau/TAU-quickref.pdf

module load tau

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-pdt-pgi

setenv TAU_OPTIONS "-optVerbose -optKeepFiles“

tau_f90.sh -o hello hello_mpi.f90

© 2010 Pittsburgh Supercomputing Center

Using TAU with Makefiles

•  Fairly simple to use with well written makefiles:

 setenv TAU_MAKEFILE <path>/Makefile.tau-papi-mpi-pdt-pgi

 setenv TAU_OPTIONS "-optVerbose –optKeepFiles –optPreProcess”

 make FC=tau_f90.sh

–  run code as normal
–  run pprof (text) or paraprof (GUI) to get results
–  paraprof --pack file.ppk (packs all of the profile files into

one file, easy to copy back to local workstation)

•  Example scenarios
–  Typically you can do cut and paste from here:

 http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html

© 2010 Pittsburgh Supercomputing Center

Tiny Routines: High Overhead

After:
double precision function scalar(u,v)
double precision u(3),v(3)
 call TAU_PROFILE_TIMER(profiler, 'SCALAR […]')
 call TAU_PROFILE_START(profiler)
 scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
 call TAU_PROFILE_STOP(profiler)
return
 call TAU_PROFILE_STOP(profiler)
end

Before:
double precision function scalar(u,v)
double precision u(3),v(3)
 scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
return
end

© 2010 Pittsburgh Supercomputing Center

Reducing Overhead

Overhead (time in sec):
MD steps base:

 51.4 seconds

MD steps with TAU:
 315 seconds

Must reduce overhead to
get meaningful results:

•  In paraprof go to “File”
and select “Create
Selective Instrumentation
File”

© 2010 Pittsburgh Supercomputing Center

Selective Instrumentation File
TAU automatically generates a list of routines that
you can save to a selective instrumentation file

© 2010 Pittsburgh Supercomputing Center

Selective Instrumentation File

•  Automatically generated file essentially eliminates
overhead in instrumented UNRES

•  In addition to eliminating overhead, use this to
specify:
–  Files to include/exclude
–  Routines to include/exclude
–  Directives for loop instrumentation
–  Phase definitions

•  Specify the file in TAU_OPTIONS and recompile:
 setenv TAU_OPTIONS "-optVerbose –optKeepFiles
 –optPreProcess -optTauSelectFile=select .tau“

•  http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html

© 2010 Pittsburgh Supercomputing Center

Key UNRES Functions in TAU
(with Startup Time)

© 2010 Pittsburgh Supercomputing Center

Getting a Call Path with TAU
•  Why do I need this?

–  To optimize a routine, you often need to know what is
above and below it

–  e.g. Determine which routines make significant MPI
calls

–  Helps with defining phases: stages of execution within
the code that you are interested in

•  To get callpath info, do the following at runtime:
setenv TAU_CALLPATH 1 (this enables callpath)
setenv TAU_CALLPATH_DEPTH 5 (defines depth)

•  Higher depth introduces more overhead – keep
as low as possible

© 2010 Pittsburgh Supercomputing Center

Getting Call Path Information

Right click
name of node
and select
“Show Thread
Call Graph”

© 2010 Pittsburgh Supercomputing Center

Phase Profiling: Isolate regions of code
execution
•  Eliminated overhead, now we need to deal with startup

time:
–  Choose a region of the code of interest: e.g. the main

computational kernel
–  Determine where in the code that region begins and ends

(call path can be helpful)
–  Then put something like this in selective instrumentation

file:
 static phase name="foo1_bar“ file="foo.c“ line=26 to line=27

–  Recompile and rerun

© 2010 Pittsburgh Supercomputing Center

Key UNRES Functions (MD Time Only)

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

Hardware Counters

Hardware performance counters available on most modern
microprocessors can provide insight into:

1. Whole program timing
2. Cache behaviors
3. Branch behaviors
4. Memory and resource access patterns
5. Pipeline stalls
6. Floating point efficiency
7. Instructions per cycle
8. Subroutine resolution
9. Process or thread attribution

© 2010 Pittsburgh Supercomputing Center

Detecting Serial Performance Issues

•  Identify hardware performance counters of
interest
–  papi_avail
–  papi_native_avail
–  Run these commands on compute nodes! Login

nodes will give you an error.
•  Run TAU (perhaps with phases defined to

isolate regions of interest)
•  Specify PAPI hardware counters at run time:

© 2010 Pittsburgh Supercomputing Center

Perf of EELEC (peak is 2)

Go to: Paraprof
manager
Options->”Show
derived metrics
panel”

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

EELEC – After forcing inlining

© 2010 Pittsburgh Supercomputing Center

Further Info on Serial Optimization

•  Tools help you find issues, areas of code to
focus on – solving issues is application and
hardware specific

•  Good resource on techniques for serial
optimization:

“Performance Optimization of Numerically Intensive
Codes” Stefan Goedecker, Adolfy Hoisie, SIAM, 2001.

CI-Tutor course: “Performance Tuning for Clusters” http://
ci-tutor.ncsa.illinois.edu/

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

Detecting Parallel Performance Issues:
Load Imbalance

•  Examine timings of functions in your region of interest
─  If you defined a phase, from paraprof window, right-click

on phase name and select: ‘Show profile for this phase’

•  To look at load imbalance in a particular function:
–  Left-click on function name to look at timings across all

processors

•  To look at load imbalance across all functions:
–  In Paraprof window go to ‘Options’
–  Uncheck ‘Normalize’ and ‘Stack Bars Together’

© 2010 Pittsburgh Supercomputing Center

Load Imbalance

Load imbalance on one processor causing other processors to idle in MPI_Barrier

May need to change how data is distributed, or even change underlying algorithm.

© 2010 Pittsburgh Supercomputing Center

Detecting Parallel Performance Issues:
Serial Bottlenecks

•  To identify scaling bottlenecks, do the following for each run
in a scaling study (e.g. 2-64 cores):
1)  In Paraprof manager right-click “Default Exp” and

select “Add Trial”. Find packed profile file and add it.
2)  If you defined a phase, from main paraprof window

select: Windows -> Function Legend-> Filter-
>Advanced Filtering

3)  Type in the name of the phase you defined, and click
‘OK’

4)  Return to Paraprof manager, right-click the name of
the trial, and select “Add to Mean Comparison
Window”

•  Compare functions across increasing core counts

© 2010 Pittsburgh Supercomputing Center

Function Scaling and Serial Bottlenecks

Identify which
functions need to
scale better, or be
parallelized, in order
to increase overall
scalability.

Find which
communication
routines are starting
to dominate
runtimes.

Use call path
information to find
where those
communication
routines are being
called

© 2010 Pittsburgh Supercomputing Center

Major Serial Bottleneck and Load Imbalance in
UNRES Eliminated

•  Due to 4x faster serial algorithm the balance
between computation and communication has
shifted – communication must be more efficient to
scale well
•  Code is undergoing another round of profiling and
optimization

© 2010 Pittsburgh Supercomputing Center

Next Iteration of Performance Engineering
with Optimized Code

Load imbalance on one processor apparently causing other processors to idle in
MPI_Barrier

© 2010 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

•  Serial
–  Assess overall serial performance (percent of peak)
–  Identify functions where code spends most time
–  Instrument those functions
–  Measure code performance using hardware counters
–  Identify inefficient regions of source code and cause of

inefficiencies

•  Parallel
–  Assess overall parallel performance (scaling)
–  Identify functions where code spends most time (this may

change at high core counts)
–  Instrument those functions
–  Identify load balancing issues, serial regions
–  Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2010 Pittsburgh Supercomputing Center

Use Call Path Information: MPI Calls

Use call path information to
find routines from which key
MPI calls are made. Include
these routines in tracing
experiment.

To show source locations select:
 File -> Preferences

© 2010 Pittsburgh Supercomputing Center

Generating a Trace

•  At runtime: setenv TAU_TRACE 1
•  Follow directions here to analyze:
http://www.psc.edu/general/software/packages/tau/TAU-quickref.pdf

•  Insight into causes of communication
bottlenecks
–  Duration of individual MPI calls
–  Use of blocking calls
–  Posting MPI calls too early or too late
–  Opportunities to overlap computation and

communication

© 2010 Pittsburgh Supercomputing Center

TAU Trace of UNRES Timesteps in Jumpshot

© 2010 Pittsburgh Supercomputing Center

Time Resolved Examination of Load Imbalance

In addition to node N
taking much longer,
Multibody_HB always
starts early on node 0
and late on node N

Clear other functions
to focus on
problematic
functions.

© 2010 Pittsburgh Supercomputing Center

Issues with Tracing

•  At high processor counts the amount of data
becomes overwhelming

•  Very selective instrumentation is critical to
manage data

•  Also need to isolate the computational kernel
and trace for minimum number of iterations to
see patterns

•  Complexity of manually analyzing traces on
thousands of processors is an issue

•  SCALASCA attempts to do automated analysis
of traces to determine communication problems

•  Vampir, Intel Trace Analyzer: cutting-edge trace
analyzers (but not free)

© 2010 Pittsburgh Supercomputing Center

Automatic Trace Analysis with SCALASCA

© 2010 Pittsburgh Supercomputing Center

Some Take-Home Points

•  Good choice of (serial and parallel) algorithm is
most important

•  Performance measurement can help you determine
if algorithm and implementation is good

•  Do compiler and MPI parameter optimizations first
•  Check/optimize serial performance before investing

a lot of time in improving scaling
•  Choose the right tool for the job
•  Know when to stop: 80:20 rule
•  TeraGrid staff and tool developers collaborate with

code developers to help with performance
engineering of parallel codes

© 2010 Pittsburgh Supercomputing Center

Hands-On

•  Find parallel performance issues in a
production scientific application using TAU

•  Exercises posted on Google groups:
–  If you have access to Kraken or Ranger look at:

•  UNRES_Performance_Profiling_Exercises.pdf

–  If you have access to QueenBee look at:
•  LAMMPS_Performance_Profiling_Exercises.pdf

•  You are encouraged to adapt these to
experiment with your own application

