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POINT Project 

•  “High-Productivity Performance Engineering 
(Tools, Methods, Training) for NSF HPC 
Applications” 
–  NSF SDCI, Software Improvement and Support 
–  University of Oregon, University of Tennessee, 

National Center for Supercomputing 
Applications, Pittsburgh Supercomputing Center 

•  POINT project 
–  Petascale Productivity from Open, Integrated 

Tools 
–  http://www.nic.uoregon.edu/point 
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Parallel Performance Technology 

•  PAPI 
–  University of Tennessee, Knoxville 

•  PerfSuite 
–  National Center for Supercomputing Applications 

•  TAU Performance System 
–  University of Oregon 

•  Kojak / Scalasca 
–  Research Centre Juelich 
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•  Choice of algorithm most important consideration 
(serial and parallel) 

•  Highly scalable codes must be designed to be 
scalable from the beginning!  

•  Measurement may reveal need for new algorithm or 
completely different implementation rather than 
optimization 

•  Focus of this lecture: using tools to assess parallel 
performance  

Choose 
algorithm  Implement Measure Optimize 

Code Development and Optimization Process 
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A little background... 
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Hardware Counters 
•  Counters: set of registers that count processor 

events, like floating point operations, or cycles 
(Opteron has 4 registers, so 4 types of events can 
be monitored simultaneously) 

•  PAPI: Performance API 
•  Standard API for accessing hardware performance 

counters 
•  Enable mapping of code to underlying architecture 
•  Facilitates compiler optimizations and hand tuning 
•  Seeks to guide compiler improvements and 

architecture development to relieve common 
bottlenecks 
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Features of PAPI 

•  Portable: uses same routines to access 
counters across all architectures 

•  High-level interface 
–  Using predefined standard events the same source 

code can access similar counters across various 
architectures without modification. 

–  papi_avail 
•  Low-level interface 

–  Provides access to all machine specific counters 
(requires source code modification) 

–  Increased efficiency and flexibility 
–  papi_native_avail 

•  Third-party tools 
–  TAU, Perfsuite, IPM 
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Example: High-level interface 

#include <papi.h> 
#define NUM_EVENTS 2 
main() 
{ 
int Events[NUM_EVENTS] = {PAPI_TOT_INS, PAPI_TOT_CYC}; 
long_long values[NUM_EVENTS]; 
/* Start counting events */ 
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK) 
handle_error(1); 
/* Do some computation here*/ 
/* Read the counters */ 
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK) 
handle_error(1); 
/* Do some computation here */ 
/* Stop counting events */ 
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK) 
handle_error(1); 
} 
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Measurement Techniques 

•  When is measurement triggered? 
–  Sampling (indirect, external, low overhead) 

•  interrupts, hardware counter overflow, … 
–  Instrumentation (direct, internal, high overhead) 

•  through code modification 

•  How are measurements made? 
–  Profiling 

•  summarizes performance data during execution 
•  per process / thread and organized with respect to 

context 
–  Tracing 

•  trace record with performance data and timestamp 
•  per process / thread 
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inclusive 
duration 

exclusive 
duration 

int foo()  
{ 
       int a; 
       a = a + 1; 

     bar(); 

       a = a + 1; 
       return a; 
} 

Inclusive and Exclusive Profiles 

•  Performance with respect to code regions 
•  Exclusive measurements for region only 
•  Inclusive measurements includes child regions 
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Applying Performance Tools to Improve Parallel 
Performance of the UNRES MD code 

 The UNRES molecular dynamics (MD) code utilizes a carefully-derived 
mesoscopic protein force field to study and predict protein folding pathways 
by means of molecular dynamics simulations. 

http://cbsu.tc.cornell.edu/software/protarch/index.htm  http://www.chem.cornell.edu/has5/  
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Structure of UNRES 

•  Two issues 
–  Master/Worker code 

–  Significant startup time: must remove from profiling 
•  Setup time: 300 sec 
•  MD Time:  1 sec/step 
•  Only MD time important for production runs of 

millions of steps 
•  Could run for 30,000 steps to amortize startup! 

 if (myrank==0) 
  MD=>...=>EELEC 
 else 
  ERGASTULUM=>...=>EELEC 
 endif 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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Is There a Performance Problem? 

•  What does it mean for a code to perform “poorly”? 
–  HPL on 4K cores can take a couple of hrs 
–  Quantum calculations involving a few atoms may 

take a week 
–  Depends on the work being done 
•  Where does performance need to be 

improved? 
–  Serial performance problem? 
–  Parallel performance problem? 



© 2010 Pittsburgh Supercomputing Center 

Detecting Performance Problems 
•  Serial Performance: Fraction of Peak 

–  20% peak (overall) is usually decent; After that 
you decide how much effort it is worth 

–  Theoretical FLOP/sec peak = FLOP/cycle * 
cycles/sec 

–  80:20 rule 
•  Parallel Performance: Scalability 

–  Does run time decrease by 2x when I use 2x 
cores? 

•  Strong scalability 
–  Does run time remain the same when I keep the 

amount of work per core the same? 
•  Weak scalability 
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IPM 

•  Very good tool to get an overall picture 
–  Overall MFLOP 
–  Communication/Computation ratio 

•  Pros 
–  Quick and easy! 
–  Minimal overhead (uses sampling rather than source 

code instrumentation) 
•  Cons 

–  Harder to get at “nitty gritty” details 
–  No OpenMP support 

http://ipm-hpc.sourceforge.net/ 
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IPM Mechanics 

On Ranger: 

1) module load ipm 

2) just before the ibrun command in the batch script add: 
  setenv LD_PRELOAD $TACC_IPM_LIB/libipm.so 

3) run as normal 

4) to generate webpage 

 module load ipm (if not already) 
 ipm_parse -html <xml_file> 

You should be left with a directory with the html in. Tar it up, move to  
to your local computer and open index.html with your browser. 
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IPM Overhead 

•  Was run with 500 MD steps (time in sec) 
–  base:   MD steps:    5.14637E+01 
–  base-ipm:  MD steps:    5.13576E+01 

•  Overhead is negligible 
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IPM  Results: Overall Picture 
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IPM – Communication (overall) 
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PerfSuite 

•  Similar to IPM: great for getting overall picture of 
application performance 

•  Pros 
–  Easy: no need to recompile 
–  Minimal overhead  
–   Provides function-level information 
–  Works with OpenMP 

•  Cons 
–  Not available on all architectures: (x86, x86-64, 

em64t, and ia64) 
http://perfsuite.ncsa.uiuc.edu/ 
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PerfSuite Mechanics: Overall performance 

  % set PSDIR=/opt/perfsuite 
  % source $PSDIR/bin/psenv.csh 

  # Use psrun on your program to generate the data, 
  # then use psprocess to produce an output file (default is 

plain text) 

  # First run: this will give you a summary of performance 
information over total program execution (e.g. MFLOPS) 

  % psrun myprog 

  % psprocess myprog.12345.xml > myprog.txt 
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First case provides hardware counter stats 

Index Description                                   Counter Value 
================================================================= 
1 Conditional branch instructions mispredicted.....    4831072449 
4 Floating point instructions......................   86124489172 
5 Total cycles.....................................  594547754568 
6 Instructions completed........................... 1049339828741 

Statistics 
================================================================= 
Graduated instructions per cycle...................         1.765 
Graduated floating point instructions per cycle....         0.145 
Level 3 cache miss ratio (data)....................         0.957 
Bandwidth used to level 3 cache (MB/s).............       385.087 
% cycles with no instruction issue.................        10.410 
% cycles stalled on memory access..................        43.139 
MFLOPS (cycles)....................................       115.905 
MFLOPS (wallclock).................................       114.441 

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca  
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UNRES: Serial Performance 
Processor and System Information (abbreviated output from PerfSuite) 
=========================================================== 
Node CPUs               : 768 
Vendor                      : Intel 
Family                       : Itanium 2 
Clock (MHz)              : 1669.001 

Statistics 
========================================================== 
Floating point operations per cycle....................................                0.597 
MFLOPS (cycles)........................................................                  995.801 
CPU time (seconds).....................................................               1404.675 

•   Theoretical peak on Itanium2: 4 FLOP/cycle *1669 MHz = 6676 MFLOPS 
•   UNRES getting 15% of peak--needs serial optimization on Itanium 
•   Much better on Bigben (x86_64): 1720 MFLOPS, 33% peak 
•   Make sure compiler is inlining (-ipo needed for ifort, –Minline=reshape needed for 
pgf90) 
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UNRES: Parallel Performance 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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Which Functions are Important? 

•  Usually a handful of functions account for 
90% of the execution time 

•  Make sure you are measuring the 
production part of your code  

•  For parallel apps, measure at high core 
counts – insignificant functions become 
significant! 
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PerfSuite Mechanics: Function breakdown 

  % set PSDIR=/opt/perfsuite 
  % source $PSDIR/bin/psenv.csh 

  # Use psrun on your program to generate the data, 
  # then use psprocess to produce an output file (default is 

plain text) 

  # This will break down cycles spent in each function 

  % psrun –C -c papi_profile_cycles.xml myprog 

  % psprocess -e myprog myprog.67890.xml > myprog_functions.txt 
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Second case gives contributions of functions 
Function Summary 
-------------------------------------------------------------------------------- 
 Samples   Self %  Total %  Function 

   154346   76.99%   76.99%  pc_jac2d_blk3 
    14506    7.24%   84.23%  cg3_blk 
    10185    5.08%   89.31%  matxvec2d_blk3 
     6937    3.46%   92.77%  __kmp_x86_pause 
     4711    2.35%   95.12%  __kmp_wait_sleep 
     3042    1.52%   96.64%  dot_prod2d_blk3 
     2366    1.18%   97.82%  add_exchange2d_blk3 

Function:File:Line Summary 
-------------------------------------------------------------------------------- 
 Samples   Self %  Total %  Function:File:Line 

    39063   19.49%   19.49%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20 
    24134   12.04%   31.52%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19 
    15626    7.79%   39.32%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21 
    15028    7.50%   46.82%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33 
    13878    6.92%   53.74%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24 
    11880    5.93%   59.66%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31 
     8896    4.44%   64.10%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22 
     7863    3.92%   68.02%  matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19 
     7145    3.56%   71.59%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32 

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca  
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PerfSuite Function Summary 

Function Summary 
----------------------------------------------------------- 
   Samples      Self %    Total %  Function 

   2905589   51.98%   51.98%  eelecij 
     827023   14.79%   66.77%  egb 
     634107   11.34%   78.11%  setup_md_matrices 
     247353     4.42%   82.54%  escp 
     220089     3.94%   86.48%  etrbk3 
     183492     3.28%   89.76%  einvit 
     144851     2.59%   92.35%  banach 
     132058     2.36%   94.71%  ginv_mult 
       66182     1.18%   95.89%  multibody_hb 
       39495     0.71%   96.60%  etred3 
       38111     0.68%   97.28%  eelec 

•  Short runs include 
some startup 
functions amongst 
top functions 

•  To eliminate this 
perform a full 
production run with 
PerfSuite 

•  Can use PerfSuite 
and IPM during 
production runs due 
to low overhead—
minimal impact on 
application 
performance 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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Instrument Key Functions 

•  Instrumentation: Insert functions into source 
code to measure performance 

•  Pro: Gives precise information about where 
things happen 

•  Con: High overhead and perturbation of 
application performance 

•  Thus essential to only instrument important 
functions 
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TAU: Tuning and Analysis Utilities 

•  Useful for a more detailed analysis 
–  Routine level 
–  Loop level 
–  Performance counters 
–  Communication performance 

•  A more sophisticated tool 
–  Performance analysis of Fortran, C, C++, Java, 

and Python 
–  Portable: Tested on all major platforms 
–  Steeper learning curve 
http://www.cs.uoregon.edu/research/tau/home.php 
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General Instructions for TAU 

•  Use a TAU Makefile stub (even if you don’t use 
makefiles for your compilation) 

•  Use TAU scripts for compiling (tau_cc.sh tau_f90.sh) 
•  Example (most basic usage): 

•  Excellent “Cheat Sheet”! 
–  Everything you need to know?! (Almost) 

  http://www.psc.edu/general/software/packages/tau/TAU-quickref.pdf 

module load tau 

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-pdt-pgi 

setenv TAU_OPTIONS "-optVerbose -optKeepFiles“ 

tau_f90.sh -o hello hello_mpi.f90 
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Using TAU with Makefiles 

•  Fairly simple to use with well written makefiles: 

     setenv TAU_MAKEFILE <path>/Makefile.tau-papi-mpi-pdt-pgi 

     setenv TAU_OPTIONS "-optVerbose –optKeepFiles –optPreProcess” 

     make FC=tau_f90.sh 

–  run code as normal 
–  run pprof (text) or paraprof (GUI) to get results 
–  paraprof --pack file.ppk (packs all of the profile files into 

one file, easy to copy back to local workstation) 

•  Example scenarios 
–  Typically you can do cut and paste from here: 

         http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html 
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Tiny Routines: High Overhead 

After: 
double precision function scalar(u,v) 
double precision u(3),v(3) 
     call TAU_PROFILE_TIMER(profiler, 'SCALAR […]') 
     call TAU_PROFILE_START(profiler) 
     scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3) 
     call TAU_PROFILE_STOP(profiler) 
return 
     call TAU_PROFILE_STOP(profiler) 
end 

Before: 
double precision function scalar(u,v) 
double precision u(3),v(3) 
      scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3) 
return 
end 
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Reducing Overhead 

Overhead (time in sec): 
MD steps base:  

 51.4 seconds 

MD steps with TAU:   
 315 seconds 

Must reduce overhead to 
get meaningful results: 

•  In paraprof go to “File” 
and select “Create 
Selective Instrumentation 
File” 
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Selective Instrumentation File 
TAU automatically generates a list of routines that 
you can save to a selective instrumentation file 
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Selective Instrumentation File 

•  Automatically generated file essentially eliminates 
overhead in instrumented UNRES 

•  In addition to eliminating overhead, use this to 
specify: 
–  Files to include/exclude    
–  Routines to include/exclude 
–  Directives for loop instrumentation 
–  Phase definitions 

•  Specify the file in TAU_OPTIONS and recompile: 
 setenv TAU_OPTIONS "-optVerbose –optKeepFiles 
  –optPreProcess -optTauSelectFile=select .tau“ 

•  http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html 
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Key UNRES Functions in TAU  
(with Startup Time)  
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Getting a Call Path with TAU 
•  Why do I need this? 

–  To optimize a routine, you often need to know what is 
above and below it  

–  e.g. Determine which routines make significant MPI 
calls 

–  Helps with defining phases: stages of execution within 
the code that you are interested in 

•  To get callpath info, do the following at runtime: 
setenv TAU_CALLPATH 1 (this enables callpath) 
setenv TAU_CALLPATH_DEPTH 5  (defines depth) 

•  Higher depth introduces more overhead – keep 
as low as possible 
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Getting Call Path Information 

Right click 
name of node 
and select 
“Show Thread 
Call Graph” 
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Phase Profiling: Isolate regions of code 
execution 
•  Eliminated overhead, now we need to deal with startup 

time: 
–  Choose a region of the code of interest: e.g. the main 

computational kernel  
–  Determine where in the code that region begins and ends 

(call path can be helpful) 
–  Then put something like this in selective instrumentation 

file: 
 static phase name="foo1_bar“ file="foo.c“ line=26 to line=27 

–  Recompile and rerun 
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Key UNRES Functions (MD Time Only) 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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Hardware Counters 

Hardware performance counters available on most modern  
microprocessors can provide insight into:  

1. Whole program timing 
2. Cache behaviors 
3. Branch behaviors 
4. Memory and resource access patterns 
5. Pipeline stalls 
6. Floating point efficiency 
7. Instructions per cycle 
8. Subroutine resolution 
9. Process or thread attribution 



© 2010 Pittsburgh Supercomputing Center 

Detecting Serial Performance Issues 

•  Identify hardware performance counters of 
interest 
–  papi_avail 
–  papi_native_avail 
–  Run these commands on compute nodes! Login 

nodes will give you an error. 
•  Run TAU (perhaps with phases defined to 

isolate regions of interest) 
•  Specify PAPI hardware counters at run time: 
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Perf of EELEC (peak is 2) 

Go to:  Paraprof 
manager 
Options->”Show 
derived metrics 
panel” 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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EELEC – After forcing inlining 
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Further Info on Serial Optimization 

•  Tools help you find issues, areas of code to 
focus on – solving issues is application and 
hardware specific 

•  Good resource on techniques for serial 
optimization: 

“Performance Optimization of Numerically Intensive 
Codes” Stefan Goedecker, Adolfy Hoisie, SIAM, 2001. 

CI-Tutor course: “Performance Tuning for Clusters” http://
ci-tutor.ncsa.illinois.edu/ 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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Detecting Parallel Performance Issues:  
Load Imbalance 

•  Examine timings of functions in your region of interest 
─  If you defined a phase, from paraprof window, right-click 

on phase name and select: ‘Show profile for this phase’ 

•  To look at load imbalance in a particular function: 
–  Left-click on function name to look at timings across all 

processors 

•  To look at load imbalance across all functions: 
–  In Paraprof window go to ‘Options’ 
–  Uncheck ‘Normalize’ and ‘Stack Bars Together’ 
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Load Imbalance 

Load imbalance on one processor causing other processors to idle in MPI_Barrier 

May need to change how data is distributed, or even change underlying algorithm. 
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Detecting Parallel Performance Issues:  
Serial Bottlenecks 

•  To identify scaling bottlenecks, do the following for each run 
in a scaling study (e.g. 2-64 cores): 
1)  In Paraprof manager right-click “Default Exp” and 

select “Add Trial”.  Find packed profile file and add it. 
2)  If you defined a phase, from main paraprof window 

select: Windows -> Function Legend-> Filter-
>Advanced Filtering 

3)  Type in the name of the phase you defined, and click 
‘OK’ 

4)  Return to Paraprof manager, right-click the name of 
the trial, and select “Add to Mean Comparison 
Window” 

•  Compare functions across increasing core counts 
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Function Scaling and Serial Bottlenecks 

Identify which 
functions need to 
scale better, or be 
parallelized, in order 
to increase overall 
scalability. 

Find which 
communication 
routines are starting 
to dominate 
runtimes. 

Use call path 
information to find 
where those 
communication 
routines are being 
called 
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Major Serial Bottleneck and Load Imbalance in 
UNRES Eliminated 

•   Due to 4x faster serial algorithm the balance 
between computation and communication has 
shifted – communication must be more efficient to 
scale well 
•   Code is undergoing another round of profiling and 
optimization 
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Next Iteration of Performance Engineering  
with Optimized Code 

Load imbalance on one processor apparently causing other processors to idle in 
MPI_Barrier 
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Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 
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Use Call Path Information: MPI Calls 

Use call path information to 
find routines from which key 
MPI calls are made.  Include 
these routines in tracing 
experiment. 

To show source locations select:  
 File -> Preferences 
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Generating a Trace   

•  At runtime: setenv TAU_TRACE 1 
•  Follow directions here to analyze: 
http://www.psc.edu/general/software/packages/tau/TAU-quickref.pdf 

•  Insight into causes of communication 
bottlenecks 
–  Duration of individual MPI calls 
–  Use of blocking calls 
–  Posting MPI calls too early or too late 
–  Opportunities to overlap computation and 

communication 
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TAU Trace of UNRES Timesteps in Jumpshot 
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Time Resolved Examination of Load Imbalance 

In addition to node N 
taking much longer, 
Multibody_HB always 
starts early on node 0 
and late on node N 

Clear other functions 
to focus on 
problematic 
functions. 
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Issues with Tracing 

•  At high processor counts the amount of data 
becomes overwhelming 

•  Very selective instrumentation is critical to 
manage data 

•  Also need to isolate the computational kernel 
and trace for minimum number of iterations to 
see patterns 

•  Complexity of manually analyzing traces on 
thousands of processors is an issue 

•  SCALASCA attempts to do automated analysis 
of traces to determine communication problems 

•  Vampir, Intel Trace Analyzer: cutting-edge trace 
analyzers (but not free) 
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Automatic Trace Analysis with SCALASCA 
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Some Take-Home Points 

•  Good choice of (serial and parallel) algorithm is 
most important 

•  Performance measurement can help you determine 
if algorithm and implementation is good 

•  Do compiler and MPI parameter optimizations first 
•  Check/optimize serial performance before investing 

a lot of time in improving scaling 
•  Choose the right tool for the job 
•  Know when to stop: 80:20 rule 
•  TeraGrid staff and tool developers collaborate with 

code developers to help with performance 
engineering of parallel codes 
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Hands-On   

•  Find parallel performance issues in a 
production scientific application using TAU 

•  Exercises posted on Google groups: 
–  If you have access to Kraken or Ranger look at: 

•  UNRES_Performance_Profiling_Exercises.pdf 

–  If you have access to QueenBee look at: 
•  LAMMPS_Performance_Profiling_Exercises.pdf 

•  You are encouraged to adapt these to 
experiment with your own application 


