
Programming Project:
Hybrid Programming

Rebecca Hartman-Baker

Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

2

Hybrid Programming Project

•  Laplace Equation
•  The Code
•  Its Performance
• Your Project

3

Laplace Equation

• Second-order elliptic partial differential equation:

• Simplest of elliptic PDEs, applied in many application areas
(e.g., electromagnetism, astronomy, fluid dynamics)
€

∇2u = 0

4

Laplace Equation

• We will solve 2-D Laplace equation

with boundary conditions

and analytical solution

€

∂ 2u
∂x 2

+
∂ 2u
∂y 2

= 0

€

u(x, 0) = sin(πx), 0 ≤ x ≤1,
u(x, 1) = sin(πx)e−x 0 ≤ x ≤1,
u(0,y) = u(1,y) = 0 0 ≤ y ≤1.

€

u(x,y) = sin(πx)e−π y

5

The Code

•  I downloaded “interesting” MPI implementation of Laplace
equation from the internet
–  You can find anything on the internet!
–  Actual URL withheld to protect the innocent

•  This program is great example of both things to do and
things not to do
–  Fixing codes like this and scaling them to full machine (224,256

cores on Jaguar) is part of my job description
–  If you get a kick out of doing this project, let me know when you

are graduating!

6

The Code

•  Pure MPI program
•  One process is manager, remaining processes are workers
•  Manager just manages (does not perform computations)
–  Bad idea? Yes and no. (but “yes” as this code is implemented)

• Workers receive info from manager and perform calculations
•  After they finish, workers send results to manager who prints

them to output file
•  Comments in code indicate that student also wrote a hybrid

implementation
•  Anyone curious I will provide with hybrid implementation, but

probably best not to be influenced by it

7

Performance

• Ran on ORNL’s Jaguar, 4 processors, roughly 6 seconds
• Recompiled with VampirTrace instrumentation, and viewed

trace with Vampir (my new favorite tool)
• Very interesting trace results

8

Performance: Overall Trace

9

Performance: Initialization

10

Performance: Load Imbalance

11

Performance: Finalization

12

Performance: Communication Matrix

13

Your Assignment

•  Fix this code!
–  First, test for correctness (code runs, but does it work?) and fix, if

necessary
•  Trust me, this is important first step any time you work on someone else’s code!

–  Add OpenMP directives
–  Add threading support in MPI
–  Rewrite manager-worker paradigm so manager does some work too

•  Things to consider
–  Message-passing: who sends to whom? What performance gains (if

any) can be attained by threads sending messages? (Hint: try it and
see!)

–  Is there a case for having a manager process (either MPI or OpenMP)
that only communicates?

